527
Views
57
CrossRef citations to date
0
Altmetric
Review

New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection

&

References

  • World Health Organization [Internet]. Geneva: Global tuberculosis report 2016, Available from: http://www.who.int/entity/tb/publications/global_report/gtbr2016_main_text.pdf?ua=1
  • Ahmad S. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol. 2011;2011:814943.
  • World Health Organization [Internet]. Geneva: Tuberculosis Fact sheet N°104. 2016, [Reviewed March 2017]. Available from: http://www.who.int/mediacentre/factsheets/fs104/en/
  • Korbel DS, Schneider BE, Schaible UE. Innate immunity in tuberculosis: myths and truth. Microb Infect. 2008;10(9):995–1004.10.1016/j.micinf.2008.07.039
  • Bhatt K, Salgame P. Host innate immune response to Mycobacterium tuberculosis. J Clin Immunol. 2007;27(4):347–362.10.1007/s10875-007-9084-0
  • García-Vallejo JJ, van Kooyk Y. Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis. Immunol Rev. 2009;230(1):22–37.10.1111/imr.2009.230.issue-1
  • Torrado E, Cooper AM. IL-17 and Th17 cells in tuberculosis. Cytokine Growth Factor Rev. 2010;21(6):455–462.10.1016/j.cytogfr.2010.10.004
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–384.10.1038/ni.1863
  • Schröder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis. 2005;5(3):156–164.10.1016/S1473-3099(05)01308-3
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–650.10.1016/j.immuni.2011.05.006
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820.10.1016/j.cell.2010.01.022
  • Wu L, Hu Y, Li D, et al. Screening toll-like receptor markers to predict latent tuberculosis infection and subsequent tuberculosis disease in a Chinese population. BMC Med Genet. 2015;16(1):1–19.
  • Graustein A, Horne DJ, Arentz M, et al. TLR9 gene region polymorphisms and susceptibility to tuberculosis in Vietnam. Tuberculosis. 2015;95(2):190–196.10.1016/j.tube.2014.12.009
  • Bukhari M, Aslam M, Khan A, et al. TLR8 gene polymorphism and association in bacterial load in southern Punjab of Pakistan: an association study with pulmonary tuberculosis. Int J Immunogenet. 2015;42(1):46–51.10.1111/iji.12170
  • Arji N, Busson M, Iraqi G, et al. Genetic diversity of TLR2, TLR4, and VDR loci and pulmonary tuberculosis in Moroccan patients. J Infect Dev Ctries. 2014;8(4):430–440.
  • Torres-García D, Cruz-Lagunas A, Figueroa MCG-S, et al. Variants in toll-like receptor 9 gene influence susceptibility to tuberculosis in a Mexican population. J Trans Med. 2013;11(1):1–220.
  • Zaki H, Leung K, Yiu W, et al. Common polymorphisms in TLR4 gene associated with susceptibility to pulmonary tuberculosis in the Sudanese. Int J Tuberc Lung Dis. 2012;16(7):934–940.10.5588/ijtld.11.0517
  • Kobayashi K, Yuliwulandari R, Yanai H, et al. Association of TLR polymorphisms with development of tuberculosis in Indonesian females. Tissue Antigens. 2012;79(3):190–197.10.1111/j.1399-0039.2011.01821.x
  • Dalgic N, Tekin D, Kayaalti Z, et al. Relationship between toll-like receptor 8 gene polymorphisms and pediatric pulmonary tuberculosis. Dis Markers. 2011;31(1):33–38.10.1155/2011/545972
  • Velez DR, Wejse C, Stryjewski ME, et al. Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet. 2010;127(1):65–73.10.1007/s00439-009-0741-7
  • Liu G, Zhang L, Zhao Y. Modulation of immune responses through direct activation of Toll-like receptors to T cells. Clin Exp Immunol. 2010;160(2):168–175.10.1111/j.1365-2249.2010.04091.x
  • Jo E-K. Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr Opin Infect Dis. 2008;21(3):279–286.10.1097/QCO.0b013e3282f88b5d
  • Koets A, Santema W, Mertens H, et al. Susceptibility to paratuberculosis infection in cattle is associated with single nucleotide polymorphisms in Toll-like receptor 2 which modulate immune responses against Mycobacterium avium subspecies paratuberculosis. Prev Vet Med. 2010;93(4):305–315.10.1016/j.prevetmed.2009.11.008
  • Hossain MM, Norazmi M-N, Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection – the double-edged sword? Bio Med Res Int. 2013;2013: 179174.
  • Fremond CM, Yeremeev V, Nicolle DM, et al. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest. 2004;114(12):1790–1799.10.1172/JCI200421027
  • Scanga CA, Bafica A, Feng CG, et al. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect Immun. 2004;72(4):2400–2404.10.1128/IAI.72.4.2400-2404.2004
  • Deng W, Li W, Zeng J, et al. Mycobacterium tuberculosis PPE family protein Rv1808 manipulates cytokines profile via co-activation of MAPK and NFκB signaling pathways. Cell Physiol Biochem. 2014;33(2):273–288.10.1159/000356668
  • Kim T-H, Shin SJ, Park Y-M, et al. Critical role of TRIF and MyD88 in Mycobacterium tuberculosis Hsp70-mediated activation of dendritic cells. Cytokine. 2015;71(2):139–144.10.1016/j.cyto.2014.09.010
  • Lim YJ, Choi JA, Lee JH, et al. Mycobacterium tuberculosis 38-kDa antigen induces endoplasmic reticulum stress-mediated apoptosis via toll-like receptor 2/4. Apoptosis. 2015;20(3):358–370.10.1007/s10495-014-1080-2
  • Means TK, Wang S, Lien E, et al. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol. 1999;163(7):3920–3927.
  • Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999;285(5428):732–736.10.1126/science.285.5428.732
  • Tapping RI, Tobias PS. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J Endotoxin Res. 2003;9(4):264–268.10.1177/09680519030090040801
  • Bulut Y, Michelsen KS, Hayrapetian L, et al. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biological Chem. 2005;280(22):20961–20967.10.1074/jbc.M411379200
  • Bafica A, Scanga CA, Feng CG, et al. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med. 2005;202(12):1715–1724.10.1084/jem.20051782
  • Means TK, Jones BW, Schromm AB, et al. Differential effects of a Toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J Immunol. 2001;166(6):4074–4082.10.4049/jimmunol.166.6.4074
  • Davila S, Hibberd ML, Dass RH, et al. Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet. 2008;4(10):e1000218.10.1371/journal.pgen.1000218
  • Drage MG, Pecora ND, Hise AG, et al. TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis. Cell Immunol. 2009;258(1):29–37.10.1016/j.cellimm.2009.03.008
  • Kleinnijenhuis J, Joosten LA, van de Veerdonk FL, et al. Transcriptional and inflammasome-mediated pathways for the induction of IL-1β production by Mycobacterium tuberculosis. Eur J Immunol. 2009;39(7):1914–1922.10.1002/eji.200839115
  • Wang JY, Chang HC, Liu JL, et al. Expression of toll-like receptor 2 and plasma level of interleukin-10 are associated with outcome in tuberculosis. Eur J Clin Microbiol Infect Dis. 2012;31(9):2327–2333.10.1007/s10096-012-1572-3
  • Das S, Bhattacharjee O, Goswami A, et al. Arabinosylated lipoarabinomannan (Ara-LAM) mediated intracellular mechanisms against tuberculosis infection: Involvement of protein kinase C (PKC) mediated signaling. Tuberculosis. 2015;95(2):208–216.10.1016/j.tube.2014.11.007
  • Liu Y, Li J-Y, Chen S-T, et al. The rLrp of Mycobacterium tuberculosis inhibits proinflammatory cytokine production and downregulates APC function in mouse macrophages via a TLR2-mediated PI3K/Akt pathway activation-dependent mechanism. Cell Mol Immunol. 2016;13(6):729–746.
  • Kumar A, Lewin A, Rani PS, et al. Dormancy Associated Translation Inhibitor (DATIN/Rv0079) of Mycobacterium tuberculosis interacts with TLR2 and induces proinflammatory cytokine expression. Cytokine. 2013;64(1):258–264.10.1016/j.cyto.2013.06.310
  • Prados-Rosales R, Baena A, Martinez LR, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest. 2011;121(4):1471–1483.10.1172/JCI44261
  • Chambers MA, Whelan AO, Spallek R, et al. Non acylated Mycobacterium bovis glycoprotein MPB83 binds to TLR1/2 and stimulates production of matrix metalloproteinase 9. Biochem Biophys Res Commun. 2010;400(3):403–408.10.1016/j.bbrc.2010.08.085
  • Chen W-L, Sheu J-R, Chen R-J, et al. Mycobacterium tuberculosis upregulates TNF-α expression via TLR2/ERK signaling and induces MMP-1 and MMP-9 production in human pleural mesothelial cells. PLOS ONE. 2015;10(9):e0137979.10.1371/journal.pone.0137979
  • Yihao D, Hongyun H, Maodan T. Latency-associated protein Rv2660c of Mycobacterium tuberculosis augments expression of proinflammatory cytokines in human macrophages by interacting with TLR2. Infect Dis. 2015;47(3):168–177.10.3109/00365548.2014.982167
  • Yang S, Li F, Jia S, et al. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes apoptosis of macrophages via targeting the MicroRNA155-SOCS1 interaction. Cell Physiol Biochem. 2015;35(4):1276–1288.10.1159/000373950
  • Sequeira PC, Senaratne RH, Riley LW. Inhibition of toll-like receptor 2 (TLR-2)-mediated response in human alveolar epithelial cells by mycolic acids and Mycobacterium tuberculosis mce1 operon mutant. Pathog Dis. 2014;70(2):132–140.10.1111/fim.2014.70.issue-2
  • Aliprantis AO, Yang R-B, Mark MR, et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science. 1999;285(5428):736–739.10.1126/science.285.5428.736
  • Drage MG, Tsai HC, Pecora ND, et al. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nat Struct Mol Biol. 2010;17(9):1088–1095.10.1038/nsmb.1869
  • Bakhru P, Sirisaengtaksin N, Soudani E, et al. BCG vaccine mediated reduction in the MHC-II expression of macrophages and dendritic cells is reversed by activation of Toll-like receptors 7 and 9. Cell Immunol. 2014;287(1):53–61.10.1016/j.cellimm.2013.11.007
  • Madan-Lala R, Peixoto kV, Re F, et al. Mycobacterium tuberculosis Hip1 dampens macrophage proinflammatory responses by limiting toll-like receptor 2 activation. Infect Immun. 2011;79(12):4828–4838.10.1128/IAI.05574-11
  • Alemán M. Neutrophil apoptosis in the context of tuberculosis infection. Tuberculosis. 2015;95(4):359–363.10.1016/j.tube.2015.03.010
  • Esin S, Counoupas C, Aulicino A, et al. Interaction of Mycobacterium tuberculosis cell wall components with the human natural killer cell receptors NKp44 and Toll-like receptor 2. Scand J Immunol. 2013;77(6):460–469.10.1111/sji.2013.77.issue-6
  • Nouailles G, Dorhoi A, Koch M, et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest. 2014;124(3):1268–1282.10.1172/JCI72030
  • Tan DB, Lim A, Yong YK, et al. TLR2 induced cytokine responses may characterize HIV-infected patients experiencing mycobacterial immune restoration disease. AIDS. 2011;25(12):1455–1460.10.1097/QAD.0b013e328348fb18
  • Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–1773.10.1126/science.1123933
  • Liu PT, Stenger S, Tang DH, et al. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol. 2007;179(4):2060–2063.10.4049/jimmunol.179.4.2060
  • McBride A, Bhatt K, Salgame P. Development of a secondary immune response to Mycobacterium tuberculosis is independent of Toll-like receptor 2. Infect Immun. 2011;79(3):1118–1123.10.1128/IAI.01076-10
  • Nicolò C, Di Sante G, Procoli A, et al. M tuberculosis in the adjuvant modulates time of appearance of CNS-specific effector T cells in the spleen through a polymorphic site of TLR2. PLoS ONE. 2013;8(2):e55819.10.1371/journal.pone.0055819
  • Liu H, Liu Z, Chen J, et al. Induction of CCL8/MCP-2 by mycobacteria through the activation of TLR2/PI3K/Akt signaling pathway. PLoS ONE. 2013;8(2):e56815.10.1371/journal.pone.0056815
  • McBride A, Konowich J, Salgame P. Host defense and recruitment of Foxp3(+) T regulatory cells to the lungs in chronic Mycobacterium tuberculosis infection requires toll-like receptor 2. PLoS Pathog. 2013;9(6):e1003397.10.1371/journal.ppat.1003397
  • Reba SM, Li Q, Onwuzulike S, et al. TLR2 engagement on CD4+ T cells enhances effector functions and protective responses to Mycobacterium tuberculosis. Eur J Immunol. 2014;44(5):1410–1421.10.1002/eji.201344100
  • Tsukamoto Y, Endoh M, Mukai T, et al. Immunostimulatory activity of major membrane protein II from Mycobacterium tuberculosis. Clin Vaccine Immunol. 2011;18(2):235–242.10.1128/CVI.00459-10
  • Lancioni CL, Li Q, Thomas JJ, et al. Mycobacterium tuberculosis lipoproteins directly regulate human memory CD4+ T cell activation via Toll-like receptors 1 and 2. Infect Immun. 2011;79(2):663–673.10.1128/IAI.00806-10
  • Rahman MJ, Chuquimia OD, Petursdottir DH, et al. Impact of Toll-like receptor 2 deficiency on immune responses to mycobacterial antigens. Infect Immun. 2011;79(11):4649–4656.10.1128/IAI.05724-11
  • Drennan MB, Nicolle D, Quesniaux VJ, et al. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol. 2004;164(1):49–57.10.1016/S0002-9440(10)63095-7
  • Sutmuller RP, Morgan ME, Netea MG, et al. Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol. 2006;27(8):387–393.10.1016/j.it.2006.06.005
  • Harding CV, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol. 2010;8(4):296–307.10.1038/nrmicro2321
  • Byun E-H, Kim WS, Kim J-S, et al. Mycobacterium tuberculosis Rv0577, a novel TLR2 agonist, induces maturation of dendritic cells and drives Th1 immune response. The FASEB J. 2012;26(6):2695–2711.10.1096/fj.11-199588
  • Kim WS, Jong-Seok K, Cha SB, et al. Mycobacterium tuberculosis Rv3628 drives Th1-type T cell immunity via TLR2-mediated activation of dendritic cells and displays vaccine potential against the hyper-virulent Beijing K strain. Oncotarget. 2016;7(18):24962–24982.
  • Richardson ET, Shukla S, Sweet DR, et al. TLR2- dependent ERK signaling in Mycobacterium tuberculosis-infected macrophages drives anti-inflammatory responses and inhibits Th1 polarization of responding T cells. Infect Immun. 2015;83(6):2242–2254.
  • Bansal K, Trinath J, Chakravortty D, et al. Pathogen-specific TLR2 protein activation programs macrophages to induce Wnt-β-catenin signaling. J Biol Chem. 2011;286(42):37032–37044.10.1074/jbc.M111.260414
  • Teixeira-Coelho M, Cruz A, Carmona J, et al. TLR2 deficiency by compromising p19 (IL-23) expression limits Th 17 cell responses to Mycobacterium tuberculosis. Int Immunol. 2011;23(2):89–96.10.1093/intimm/dxq459
  • Chatterjee S, Dwivedi VP, Singh Y, et al. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner. PLoS Path. 2011;7(11):e1002378.10.1371/journal.ppat.1002378
  • Khader SA, Bell GK, Pearl JE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol. 2007;8(4):369–377.10.1038/ni1449
  • Shenderov K, Barber DL, Mayer-Barber KD, et al. Cord factor and peptidoglycan recapitulate the Th17-promoting adjuvant activity of mycobacteria through mincle/CARD9 signaling and the inflammasome. J Immunol. 2013;190(11):5722–5730.10.4049/jimmunol.1203343
  • Gowthaman U, Rai PK, Khan N, et al. Lipidated promiscuous peptides vaccine for tuberculosis-endemic regions. Trends Mol Med. 2012;18(10):607–614.10.1016/j.molmed.2012.07.008
  • Xu Y, Yang E, Huang Q, et al. PPE57 induces activation of macrophages and drives Th1-type immune responses through TLR2. J Mol Med. 2015;93(6):645–662.10.1007/s00109-014-1243-1
  • Mohammad O, Kaur J, Singh G, et al. TLR agonist augments prophylactic potential of acid inducible antigen Rv3203 against Mycobacterium tuberculosis H37Rv in experimental animals. PLOS ONE. 2016;11(3):e0152240.10.1371/journal.pone.0152240
  • Chen ST, Li JY, Zhang Y, et al. Recombinant MPT83 derived from Mycobacterium tuberculosis induces cytokine production and upregulates the function of mouse macrophages through TLR2. J Immunol. 2012;188(2):668–677.10.4049/jimmunol.1102177
  • Rottinghaus EK, Vesosky B, Turner J. TLR-2 independent recognition of Mycobacterium tuberculosis by CD11c+ pulmonary cells from old mice. Mech Ageing Dev. 2010;131(6):405–414.10.1016/j.mad.2010.05.006
  • Chodisetti SB, Gowthaman U, Rai PK. Triggering through toll-like receptor 2 limits chronically stimulated T-helper type 1 cells from undergoing exhaustion. J Infect Dis. 2014;211(3):486–496.
  • Kanagawa H, Niki Y, Kobayashi T, et al. Mycobacterium tuberculosis promotes arthritis development through toll-like receptor 2. J Bone Miner Metab. 2015;33(2):135–141.10.1007/s00774-014-0575-9
  • Almeida PE, Roque NR, Magalhães KG, et al. Differential TLR2 downstream signaling regulates lipid metabolism and cytokine production triggered by Mycobacterium bovis BCG infection. Biochim Biophys Acta Mol Cell Biol Lipids. 2014;1841(1):97–107.10.1016/j.bbalip.2013.10.008
  • Gupta D, Sharma S, Singhal J, et al. Suppression of TLR2-induced IL-12, reactive oxygen species, and inducible nitric oxide synthase expression by Mycobacterium tuberculosis antigens expressed inside macrophages during the course of infection. J Immunol. 2010;184(10):5444–5455.10.4049/jimmunol.0903283
  • Zhao Y, Bu H, Hong K, et al. Genetic polymorphisms of CCL1 rs2072069 G/A and TLR2 rs3804099 T/C in pulmonary or meningeal tuberculosis patients. Int J clin Exp Pathol. 2015;8(10):12608–12620.
  • Yu G, Cui Z, Sun X, et al. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance. Tuberculosis. 2015;95(3):303–314.10.1016/j.tube.2015.03.008
  • Pöyhönen L, Nuolivirta K, Vuononvirta J, et al. Toll-like receptor 2 subfamily gene polymorphisms are associated with Bacillus Calmette-Guérin osteitis following newborn vaccination. Acta Paediatr. 2015;104(5):485–490.10.1111/apa.2015.104.issue-5
  • Reiling N, Hölscher C, Fehrenbach A, et al. Cutting edge: toll-like receptor (TLR) 2-and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol. 2002;169(7):3480–3484.10.4049/jimmunol.169.7.3480
  • Branger J, Leemans JC, Florquin S, et al. Toll-like receptor 4 plays a protective role in pulmonary tuberculosis in mice. Int Immunol. 2004;16(3):509–516.10.1093/intimm/dxh052
  • Khan N, Pahari S, Vidyarthi A, et al. NOD-2 and TLR-4 signaling reinforces the efficacy of dendritic cells and reduces the dose of TB drugs against Mycobacterium tuberculosis. J Innate Immun. 2016;8(3):228–242.
  • Lee SJ, Shin SJ, Lee MH, et al. A potential protein adjuvant derived from Mycobacterium tuberculosis Rv0652 enhances dendritic cells-based tumor immunotherapy. PLoS ONE. 2014;9(8):e104351.10.1371/journal.pone.0104351
  • Jung ID, Jeong SK, Lee C-M, et al. Enhanced efficacy of therapeutic cancer vaccines produced by co-treatment with Mycobacterium tuberculosis heparin-binding hemagglutinin, a novel TLR4 agonist. Cancer Res. 2011;71(8):2858–2870.10.1158/0008-5472.CAN-10-3487
  • Heldwein KA, Liang MD, Andresen TK, et al. TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG. J Leukocyte Biol. 2003;74(2):277–286.10.1189/jlb.0103026
  • Abel B, Thieblemont N, Quesniaux VJ, et al. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J Immunol. 2002;169(6):3155–3162.10.4049/jimmunol.169.6.3155
  • Doz E, Rose S, Vasseur V, et al. Mycobacterial phosphatidylinositol mannosides negatively regulate host Toll-like receptor 4, MyD88 dependent proinflammatory cytokines, and TRIF-dependent co-stimulatory molecule expression. J Biol Chem. 2009;284(35):23187–23196.10.1074/jbc.M109.037846
  • Kim K, Sohn H, Kim JS, et al. Mycobacterium tuberculosis Rv0652 stimulates production of tumour necrosis factor and monocytes chemoattractant protein-1 in macrophages through the Toll-like receptor 4 pathway. Immunology. 2012;136(2):231–240.10.1111/imm.2012.136.issue-2
  • Cehovin A, Coates AR, Hu Y, et al. Comparison of the moonlighting actions of the two highly homologous chaperonin 60 proteins of Mycobacterium tuberculosis. Infect Immun. 2010;78(7):3196–3206.10.1128/IAI.01379-09
  • Kim J-S, Kim WS, Choi H-G, et al. Mycobacterium tuberculosis RpfB drives Th1-type T cell immunity via a TLR4-dependent activation of dendritic cells. J Leukocyte Biol. 2013;94(4):733–749.10.1189/jlb.0912435
  • Choi HG, Kim WS, Back YW, et al. Mycobacterium tuberculosis RpfE promotes simultaneous Th1-and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells. Eur J Immunol. 2015;45(7):1957–1971.10.1002/eji.v45.7
  • Shah JA, Vary JC, Chau TT, et al. Human TOLLIP regulates TLR2 and TLR4 signaling and its polymorphisms are associated with susceptibility to tuberculosis. J Immunol. 2012;189(4):1737–1746.10.4049/jimmunol.1103541
  • van de Veerdonk FL, Teirlinck AC, Kleinnijenhuis J, et al. Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1. J Leukocyte Biol. 2010;88(2):227–232.10.1189/jlb.0809550
  • Jafari M, Nasiri MR, Sanaei R, et al. The NRAMP1, VDR, TNF-α, ICAM1, TLR2 and TLR4 gene polymorphisms in Iranian patients with pulmonary tuberculosis: A case–control study. Infect Genet Evol. 2016;39:92–98.
  • Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–745.
  • Griebel PJ, Brownlie R, Manuja A, et al. Bovine toll-like receptor 9: a comparative analysis of molecular structure, function and expression. Vet Immunol Immunopathol. 2005;108(1–2):11–16.10.1016/j.vetimm.2005.07.012
  • Choi S-S, Chung E, Jung Y-J. Newly identified CpG ODNs, M5-30 and M6-395, stimulate mouse immune cells to secrete TNF-α and enhance Th1-mediated immunity. J Microbiol. 2010;48(4):512–517.10.1007/s12275-010-0053-6
  • Pompei L, Jang S, Zamlynny B, et al. Disparity in IL-12 release in dendritic cells and macrophages in response to Mycobacterium tuberculosis is due to use of distinct TLRs. J Immunol. 2007;178(8):5192–5199.10.4049/jimmunol.178.8.5192
  • Guillerey C, Mouriès J, Polo G, et al. Pivotal role of plasmacytoid dendritic cells in inflammation and NK-cell responses after TLR9 triggering in mice. Blood. 2012;120(1):90–99.10.1182/blood-2012-02-410936
  • Kleinnijenhuis J, Oosting M, Joosten LA, et al. Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol. 2011;2011: 405310.
  • Graustein A, Horne D, Arentz M, et al. TLR9 gene region polymorphisms and susceptibility to tuberculosis in Vietnam. Tuberculosis. 2015;95(2):190–196.
  • Aboutorabian S, Hakimi J, Boudet F, et al. A high ratio of IC31® adjuvant to antigen is necessary for H4 TB vaccine immunomodulation. Hum Vaccin Immunother. 2015;11(6):1449–1455.10.1080/21645515.2015.1023970
  • Salie M, Daya M, Lucas LA, et al. Association of toll-like receptors with susceptibility to tuberculosis suggests sex-specific effects of TLR8 polymorphisms. Infect Genet Evol. 2015;34:221–229.10.1016/j.meegid.2015.07.004
  • Jin MS, Kim SE, Heo JY, et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007;130(6):1071–1082.10.1016/j.cell.2007.09.008
  • Bulut Y, Faure E, Thomas L, et al. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol. 2001;167(2):987–994.10.4049/jimmunol.167.2.987
  • Jung S-B, Yang C-S, Lee J-S, et al. The mycobacterial 38 kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect Immun. 2006;74(5):2686–2696.10.1128/IAI.74.5.2686-2696.2006
  • Pugazhendhi S, Jayakanthan K, Pulimood A, et al. Cytokine gene expression in intestinal tuberculosis and Crohn’s disease. Int J Tuberc Lung Dis. 2013;17(5):662–668.10.5588/ijtld.12.0600
  • Shey MS, Nemes E, Whatney W, et al. Maturation of innate responses to mycobacteria over the first nine months of life. J Immunol. 2014;192(10):4833–4843.10.4049/jimmunol.1400062
  • Randhawa AK, Shey MS, Keyser A, et al. Association of human TLR1 and TLR6 deficiency with altered immune responses to BCG vaccination in South African infants. PLoS path. 2011;7(8):e1002174.10.1371/journal.ppat.1002174
  • Uehori J, Fukase K, Akazawa T, et al. Dendritic cell maturation induced by muramyl dipeptide (MDP) derivatives: monoacylated MDP confers TLR2/TLR4 activation. J Immunol. 2005;174(11):7096–7103.10.4049/jimmunol.174.11.7096
  • Xu Q, Jin MM, Zheng WW, et al. Role of Toll-like receptor 2/4-nuclear factor-kappaB signaling pathway in invasion of Mycobacterium tuberculosis to mouse dendritic cells. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2014;43(2):200–206.
  • Sun Z, Ren W, Xu Y, et al. Preliminary study on the virulence of XDR-TB: low virulence owing to less cytokine expression through the TLR 2 and TLR4 pathways in BLAB/C mice. Bio-med Mater Eng. 2014;24(6):3873–3882.
  • Chavez-Galan L, Sada-Ovalle I, Baez-Saldana R, et al. Monocytes from tuberculosis patients that exhibit cleaved caspase 9 and denaturalized cytochrome c are more susceptible to death mediated by Toll-like receptor 2. Immunology. 2012;135(4):299–311.10.1111/imm.2012.135.issue-4
  • Ranjbar S, Haridas V, Jasenosky LD, et al. A role for IFITM proteins in restriction of Mycobacterium tuberculosis Infection. Cell Rep. 2015;13(5):874–883.10.1016/j.celrep.2015.09.048
  • Li N, Liu P, Wang L, et al. Effect of Ipr1 on expression levels of immune genes related to macrophage anti-infection of mycobacterium tuberculosis. Int J Clin Exp Med. 2015;8(3):3411–3419.
  • Holscher C, Reiling N, Schaible UE, et al. Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol. 2008;38(3):680–694.10.1002/(ISSN)1521-4141
  • Gopalakrishnan A, Dietzold J, Salgame P. Vaccine-mediated immunity to experimental Mycobacterium tuberculosis is not impaired in the absence of Toll-like receptor 9. Cell Immunol. 2016;(302):11–18.
  • Commandeur S, van den Eeden SJ, Dijkman K, et al. The in vivo expressed Mycobacterium tuberculosis (IVE-TB) antigen Rv2034 induces CD4+ T-cells that protect against pulmonary infection in HLA-DR transgenic mice and guinea pigs. Vaccine. 2014;32(29):3580–3588.10.1016/j.vaccine.2014.05.005
  • Orr MT, Beebe EA, Hudson TE, et al. A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93. PLoS ONE. 2014;9(1):e83884.10.1371/journal.pone.0083884

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.