777
Views
5
CrossRef citations to date
0
Altmetric
Review

A bite to fight: front-line innate immune defenses against malaria parasites

& ORCID Icon

References

  • WHO. World malaria report. Geneva: World Health Organization; 2016.
  • Offeddu V, Thathy V, Marsh K, et al. Naturally acquired immune responses against Plasmodium falciparum sporozoites and liver infection. Int J Parasitol. 2012;42(6):535–548.10.1016/j.ijpara.2012.03.011
  • Rich SM, Ayala FJ. Population structure and recent evolution of Plasmodium falciparum. Proc Nat Acad Sci. 2000;97(13):6994–7001.10.1073/pnas.97.13.6994
  • Su XZ, Heatwole VM, Wertheimer SP, et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995;82(1):89–100.10.1016/0092-8674(95)90055-1
  • Abdi AI, Fegan G, Muthui M, et al. Plasmodium falciparum antigenic variation: relationships between widespread endothelial activation, parasite PfEMP1 expression and severe malaria. BMC Infect Dis. 2014;14:170.10.1186/1471-2334-14-170
  • Deitsch KW, Dzikowski R. Variant gene expression and antigenic variation by malaria parasites. Annu Rev Microbiol. 2017;71:625–641.10.1146/annurev-micro-090816-093841
  • Galinski MR, Lapp SA, Peterson MS, et al. Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria. Parasitology. 2017;1–16. DOI:10.1017/S0031182017001135
  • Kirkman LA, Deitsch KW. Antigenic variation and the generation of diversity in malaria parasites. Curr Opin Microbiol. 2012;15(4):456–462.10.1016/j.mib.2012.03.003
  • Buckee CO, Gupta S. Modelling malaria population structure and its implications for control. Adv Exp Med Biol. 2010;673:112–126.10.1007/978-1-4419-6064-1
  • Stanisic DI, Barry AE, Good MF. Escaping the immune system: How the malaria parasite makes vaccine development a challenge. Trends Parasitol. 2013;29(12):612–622.10.1016/j.pt.2013.10.001
  • Grassi B, Bignami A, Bastianelli G. Medical zoology: further researches upon the cycle of human malaria in the body of the mosquito. Indian Med Gazette. 1899;34(3):104–107.
  • Ross R Dr. Manson’s mosquito-malaria theory. Indian Med gazette. 1896;31(7):264.
  • Antinori S, Galimberti L, Milazzo L, et al. Biology of human malaria plasmodia including Plasmodium knowlesi. Mediterr J Hematol Infect Dis. 2012;4(1):e2012013.10.4084/mjhid.2012.013
  • Silver KL, Higgins SJ, McDonald CR, et al. Complement driven innate immune response to malaria: fuelling severe malarial diseases. Cell Microbiol. 2010;12(8):1036–1045.10.1111/j.1462-5822.2010.01492.x
  • Jongwutiwes S, Buppan P, Kosuvin R, et al. Plasmodium knowlesi malaria in humans and macaques, Thailand. Emerg Infect Dis. 2011;17(10):1799–1806.10.3201/eid1710.110349
  • Bruce MC, Macheso A, Galinski MR, et al. Characterization and application of multiple genetic markers for Plasmodium malariae. Parasitology. 2007;134(Pt 5):637–650.10.1017/S0031182006001958
  • Collins WE, Jeffery GM. Plasmodium malariae: parasite and disease. Clin Microbiol Rev. 2007;20(4):579–592.10.1128/CMR.00027-07
  • Richter J, Franken G, Mehlhorn H, et al. What is the evidence for the existence of Plasmodium ovale hypnozoites? Parasitol Res. 2010;107(6):1285–1290.10.1007/s00436-010-2071-z
  • Da DF, Churcher TS, Yerbanga RS, et al. Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions. Exp Parasitol. 2015;149:74–83.10.1016/j.exppara.2014.12.010
  • Ishino T, Yano K, Chinzei Y, et al. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol. 2004;2(1):E4.10.1371/journal.pbio.0020004
  • Ishino T, Chinzei Y, Yuda M. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell Microbiol. 2005;7(2):199–208.
  • Kariu T, Ishino T, Yano K, et al. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol Microbiol. 2006;59(5):1369–1379.10.1111/j.1365-2958.2005.05024.x
  • Frevert U, Nardin E. Arrest in the liver–a genetically defined malaria vaccine? N Engl J Med. 2005;352(15):1600–1602.10.1056/NEJMcibr050521
  • Frevert U, Usynin I, Baer K, et al. Nomadic or sessile: can Kupffer cells function as portals for malaria sporozoites to the liver? Cell Microbiol. 2006;8(10):1537–1546.10.1111/cmi.2006.8.issue-10
  • Tavares J, Formaglio P, Thiberge S, et al. Role of host cell traversal by the malaria sporozoite during liver infection. J Exp Med. 2013;210(5):905–915.10.1084/jem.20121130
  • Hollingdale MR, Collins Alan LWE, Campbell CC, et al. In vitro culture of two populations (dividing and nondividing) of exoerythrocytic parasites of Plasmodium vivax. Am J Trop Med Hyg. 1985;34(2):216–222.10.4269/ajtmh.1985.34.216
  • Mazier D, Collins WE, Mellouk S, et al. Plasmodium ovale: in vitro development of hepatic stages. Exp Parasitol. 1987;64(3):393–400.10.1016/0014-4894(87)90052-X
  • Markus MB. Do hypnozoites cause relapse in malaria? Trends Parasitol. 2015;31(6):239–245.10.1016/j.pt.2015.02.003
  • Hulden L, Hulden L. Activation of the hypnozoite: a part of Plasmodium vivax life cycle and survival. Malaria J. 2011;10:90.10.1186/1475-2875-10-90
  • Garnham PC. Relapses in malaria: review of current studies. Ann Soc Belg Med Trop. 1985;65(3):233–242.
  • Hulden L, Hulden L, Heliovaara K. Natural relapses in vivax malaria induced by Anopheles mosquitoes. Malaria J. 2008;7:64.10.1186/1475-2875-7-64
  • Bannister L, Mitchell G. The ins, outs and roundabouts of malaria. Trends Parasitol. 2003;19(5):209–213.10.1016/S1471-4922(03)00086-2
  • Hanssen E, Dekiwadia C, Riglar DT, et al. Electron tomography of Plasmodium falciparum merozoites reveals core cellular events that underpin erythrocyte invasion. Cell Microbiol. 2013;15(9):1457–1472.10.1111/cmi.12132
  • Riglar DT, Richard D, Wilson DW, et al. Super-resolution dissection of coordinated events during malaria parasite invasion of the human erythrocyte. Cell Host Microb. 2011;9(1):9–20.10.1016/j.chom.2010.12.003
  • Singh S, Alam MM, Pal-Bhowmick I, et al. Distinct external signals trigger sequential release of apical organelles during erythrocyte invasion by malaria parasites. PLoS Pathog. 2010;6(2):e1000746.10.1371/journal.ppat.1000746
  • Baum J, Richard D, Healer J, et al. A conserved molecular motor drives cell invasion and gliding motility across malaria life cycle stages and other apicomplexan parasites. J Biol Chem. 2006;281(8):5197–5208.10.1074/jbc.M509807200
  • Jones ML, Kitson EL, Rayner JC. Plasmodium falciparum erythrocyte invasion: a conserved myosin associated complex. Mol Biochem Parasitol. 2006;147(1):74–84.10.1016/j.molbiopara.2006.01.009
  • Glushakova S, Yin D, Li T, et al. Membrane transformation during malaria parasite release from human red blood cells. Curr Biol. 2005;15(18):1645–1650.10.1016/j.cub.2005.07.067
  • Elbadry MA, Al-Khedery B, Tagliamonte MS, et al. High prevalence of asymptomatic malaria infections: a cross-sectional study in rural areas in six departments in Haiti. Malaria J. 2015;14:510.10.1186/s12936-015-1051-2
  • Bruce MC, Alano P, Duthie S, et al. Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development. Parasitology. 1990;100(Pt 2):191–200.10.1017/S0031182000061199
  • Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it’s time to commit. Nat Rev Microbiol. 2015;13(9):573–587.10.1038/nrmicro3519
  • Aly AS, Vaughan AM, Kappe SH. Malaria parasite development in the mosquito and infection of the mammalian host. Ann Rev Microbiol. 2009;63:195–221.10.1146/annurev.micro.091208.073403
  • Zevering Y, Khamboonruang C, Good MF. Effect of polymorphism of sporozoite antigens on T-cell activation. Res Immunol. 1994;145(6):469–476.10.1016/S0923-2494(94)80178-9
  • Zevering Y, Khamboonruang C, Good MF. Human and murine T-cell responses to allelic forms of a malaria circumsporozoite protein epitope support a polyvalent vaccine strategy. Immunology. 1998;94(3):445–454.10.1046/j.1365-2567.1998.00514.x
  • Winter G, Kawai S, Haeggström M, et al. SURFIN is a polymorphic antigen expressed on Plasmodium falciparum merozoites and infected erythrocytes. J Exp Med. 2005;201(11):1853–1863.10.1084/jem.20041392
  • Kiwanuka GN. Genetic diversity in Plasmodium falciparum merozoite surface protein 1 and 2 coding genes and its implications in malaria epidemiology: a review of published studies from 1997–2007. J Vector Borne Dis. 2009;46(1):1–12.
  • Ramasamy R. Molecular basis for evasion of host immunity and pathogenesis in malaria. Biochimica et biophysica acta 1998;1406::10–27.10.1016/S0925-4439(97)00078-1
  • Wright GJ, Rayner JC. Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog. 2014;10(3):e1003943.10.1371/journal.ppat.1003943
  • Singh V, Gupta P, Pande V. Revisiting the multigene families: Plasmodium var and vir genes. J Vector Borne Dis. 2014;51(2):75–81.
  • Fernandez V, Hommel M, Chen Q, et al. Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. J Exp Med. 1999;190(10):1393–1404.10.1084/jem.190.10.1393
  • Wahlgren M, Goel S, Akhouri RR. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiol. 2017;15(8):479–491.10.1038/nrmicro.2017.47
  • D’Ombrain MC, Voss TS, Maier AG, et al. Plasmodium falciparum erythrocyte membrane protein-1 specifically suppresses early production of host interferon-gamma. Cell Host Microb. 2007;2(2):130–138.10.1016/j.chom.2007.06.012
  • Son UH, Dinzouna-Boutamba SD, et al. Diversity of vir genes in Plasmodium vivax from endemic regions in the Republic of Korea: an initial evaluation. Korean J Parasitol. 2017;55(2):149–158.10.3347/kjp.2017.55.2.149
  • Segal AW. How neutrophils kill microbes. Ann Rev Immunol. 2005;23:197–223.10.1146/annurev.immunol.23.021704.115653
  • Chen CL, Wang Y, et al. IL-17 induces antitumor immunity by promoting beneficial neutrophil recruitment and activation in esophageal squamous cell carcinoma. Oncoimmunology. 2017;7(1):e1373234.
  • Amicarella F, Muraro MG, Hirt C, et al. Dual role of tumour-infiltrating T helper 17 cells in human colorectal cancer. Gut. 2017;66(4):692–704.10.1136/gutjnl-2015-310016
  • Peters NC, Egen JG, Secundino N, et al. In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science. 2008;321(5891):970–974.10.1126/science.1159194
  • Yamauchi LM, Coppi A, Snounou G, et al. Plasmodium sporozoites trickle out of the injection site. Cell Microbiol. 2007;9(5):1215–1222.10.1111/cmi.2007.9.issue-5
  • Mac-Daniel L, Buckwalter MR, Berthet M, et al. Local immune response to injection of Plasmodium sporozoites into the skin. J Immunol. 2014;193(3):1246–1257.10.4049/jimmunol.1302669
  • Hopp CS, Sinnis P. The innate and adaptive response to mosquito saliva and Plasmodium sporozoitess in the skin. Ann N Y Acad Sci. 2015;1342:37–43.10.1111/nyas.2015.1342.issue-1
  • Waisberg M, Molina-Cruz A, Mizurini DM, et al. Plasmodium falciparum infection induces expression of a mosquito salivary protein (Agaphelin) that targets neutrophil function and inhibits thrombosis without impairing hemostasis. PLoS Pathog. 2014;10(9):e1004338.10.1371/journal.ppat.1004338
  • Demeure CE, Brahimi K, Hacini F, et al. Anopheles mosquito bites activate cutaneous mast cells leading to a local inflammatory response and lymph node hyperplasia. J Immunol. 2005;174(7):3932–3940.10.4049/jimmunol.174.7.3932
  • Metzger WG, Mordmüller BG, Kremsner PG. Malaria pigment in leucocytes. Trans R Soc Trop Med Hyg. 1995;89(6):637–638.10.1016/0035-9203(95)90423-9
  • Sun T, Chakrabarti C. Schizonts, merozoites, and phagocytosis in falciparum malaria. Ann Clin Lab Sci. 1985;15(6):465–469.
  • Brown J, Smalley ME. Inhibition of the in vitro growth of Plasmodium falciparum by human polymorphonuclear neutrophil leucocytes. Clin Exp Immunol. 1981;46(1):106–109.
  • Kharazmi A, Jepsen S, Valerius NH. Polymorphonuclear leucocytes defective in oxidative metabolism inhibit in vitro growth of Plasmodium falciparum. Evidence against an oxygen-dependent mechanism. Scand J Immunol. 1984;20(1):93–96.10.1111/sji.1984.20.issue-1
  • Kumaratilake LM, Ferrante A. Opsonization and phagocytosis of Plasmodium falciparum merozoites measured by flow cytometry. Clin Diagn Lab Immunol. 2000;7(1):9–13.
  • Joos C, Marrama L, Polson HE, et al. Clinical protection from falciparum malaria correlates with neutrophil respiratory bursts induced by merozoites opsonized with human serum antibodies. PLoS ONE. 2010;5(3):e9871.10.1371/journal.pone.0009871
  • Kapelski S, Klockenbring T, Fischer R, et al. Assessment of the neutrophilic antibody-dependent respiratory burst (ADRB) response to Plasmodium falciparum. J Leukoc Biol. 2014;96(6):1131–1142.10.1189/jlb.4A0614-283RR
  • Kharazmi A, Jepsen S. Enhanced inhibition of in vitro multiplication of Plasmodium falciparum by stimulated human polymorphonuclear leucocytes. Clin Exp Immunol. 1984;57(2):287–292.
  • Clark IA, Hunt NH. Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect Immun. 1983;39(1):1–6.
  • Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–241.10.1083/jcb.200606027
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535.10.1126/science.1092385
  • Baker VS, Imade GE, Molta NB, et al. Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age. Malaria J. 2008;7:41.10.1186/1475-2875-7-41
  • Mahanta A, Kar SK, Kakati S, et al. Heightened inflammation in severe malaria is associated with decreased IL-10 expression levels and neutrophils. Innate Immunity. 2015;21(5):546–552.10.1177/1753425914561277
  • Ioannidis LJ, Nie CQ, Ly A, et al. Monocyte- and Neutrophil-Derived CXCL10 Impairs Efficient Control of Blood-Stage Malaria Infection and Promotes Severe Disease. J Immunol. 2016;196(3):1227–1238.10.4049/jimmunol.1501562
  • Sercundes MK, Ortolan LS, Debone D, et al. Correction: targeting neutrophils to prevent malaria-associated acute lung injury/acute respiratory distress syndrome in mice. PLoS Pathog. 2017;13(11):e1006730.10.1371/journal.ppat.1006730
  • Moghaddam AS, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization and function in health and disease. J Cell Physiol. 2018. DOI:10.1002/jcp.26429
  • Li C, Xu MM, Wang K, et al. Macrophage polarization and meta-inflammation. Translational research: the journal of laboratory and clinical medicine. 2018;191:29–44.10.1016/j.trsl.2017.10.004
  • Petty AJ, Yang Y. Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy. 2017;9(3):289–302.10.2217/imt-2016-0135
  • Soulat D, Bogdan C. Function of Macrophage and Parasite Phosphatases in Leishmaniasis. Front Immunol. 2017;8:1838.10.3389/fimmu.2017.01838
  • Newman KC, Korbel DS, Hafalla JC, et al. Cross-talk with myeloid accessory cells regulates human natural killer cell interferon-gamma responses to malaria. PLoS Pathog. 2006;2(12):e118.10.1371/journal.ppat.0020118
  • Ockenhouse CF, Tandon NN, Magowan C, et al. Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor. Science. 1989;243(4897):1469–71.10.1126/science.2467377
  • Ockenhouse CF, Tegoshi T, Maeno Y, et al. Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med. 1992;176(4):1183–1189.10.1084/jem.176.4.1183
  • Sinka ME, Bangs MJ, Manguin S, et al. A global map of dominant malaria vectors. Parasites Vectors. 2012;5:69.10.1186/1756-3305-5-69
  • Klotz C, Frevert U. Plasmodium yoelii sporozoites modulate cytokine profile and induce apoptosis in murine Kupffer cells. Int J Parasitol. 2008;38(14):1639–1650.10.1016/j.ijpara.2008.05.018
  • Usynin I, Klotz C, Frevert U. Malaria circumsporozoite protein inhibits the respiratory burst in Kupffer cells. Cell Microbiol. 2007;9(11):2610–2628.10.1111/cmi.2007.9.issue-11
  • Steers N, Schwenk R, Bacon DJ, et al. The immune status of Kupffer cells profoundly influences their responses to infectious Plasmodium berghei sporozoites. Eur J Immunol. 2005;35(8):2335–2346.10.1002/(ISSN)1521-4141
  • Besnard AG, Guabiraba R, Niedbala W, et al. IL-33-mediated protection against experimental cerebral malaria is linked to induction of type 2 innate lymphoid cells, M2 macrophages and regulatory T cells. PLoS Pathog. 2015;11(2):e1004607.10.1371/journal.ppat.1004607
  • Bouharoun-Tayoun H, Attanath P, Sabchareon A, et al. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med. 1990;172(6):1633–1641.10.1084/jem.172.6.1633
  • Roussilhon C, Bang G, Bastaert F, et al. The antimicrobial molecule trappin-2/elafin has anti-parasitic properties and is protective in vivo in a murine model of cerebral malaria. Sci Rep. 2017;7:42243.10.1038/srep42243
  • Stegmann KA, De Souza JB, Riley EM. IL-18-induced expression of high-affinity IL-2R on murine NK cells is essential for NK-cell IFN-gamma production during murine Plasmodium yoelii infection. Eur J Immunol. 2015;45(12):3431–3440.10.1002/eji.201546018
  • Mota MM, Brown KN, Holder AA, et al. Acute Plasmodium chabaudi chabaudi malaria infection induces antibodies which bind to the surfaces of parasitized erythrocytes and promote their phagocytosis by macrophages in vitro. Infect Immun. 1998;66(9):4080–4086.
  • Parroche P, Lauw FN, Goutagny N, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Nat Acad Sci. 2007;104(6):1919–1924.10.1073/pnas.0608745104
  • Ayi K, Lu Z, Serghides L, et al. CD47-SIRPalpha interactions regulate macrophage uptake of Plasmodium falciparum-infected erythrocytes and clearance of malaria in vivo. Infect Immun. 2016;84(7):2002–2011.10.1128/IAI.01426-15
  • Park DW, Lee HJ, Park CW, et al. Peripheral blood NK cells reflect changes in decidual NK cells in women with recurrent miscarriages. Am J Reprod Immunol. 2010;63(2):173–180.10.1111/j.1600-0897.2009.00777.x
  • Lash GE, Robson SC, Bulmer JN. Review: functional role of uterine natural killer (uNK) cells in human early pregnancy decidua. Placenta. 2010;31(Suppl):S87–S92.10.1016/j.placenta.2009.12.022
  • Poli A, Michel T, Thérésine M, et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009;126(4):458–465.10.1111/imm.2009.126.issue-4
  • Lanier LL, Le AM, Civin CI, et al. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986;136(12):4480–4486.
  • Ritz J, Campen TJ, Schmidt RE, et al. Analysis of T-cell receptor gene rearrangement and expression in human natural killer clones. Science. 1985;228(4707):1540–1543.10.1126/science.2409597
  • Bellora F, Castriconi R, Dondero A, et al. Human NK cells and NK receptors. Immunol Lett. 2014;161(2):168–173.10.1016/j.imlet.2013.12.009
  • Bao SH, Shuai W, Tong J, et al. Increased expression of Toll-like receptor 3 in decidual natural killer cells of patients with unexplained recurrent spontaneous miscarriage. Eur J Obstet Gynecol Reprod Biol. 2012;165(2):326–330.10.1016/j.ejogrb.2012.08.005
  • Manaster I, Mandelboim O. The unique properties of human NK cells in the uterine mucosa. Placenta 2008;29 Suppl A:60–66.10.1016/j.placenta.2007.10.006
  • Roetynck S, Baratin M, Vivier ÉricE, et al. NK cells and innate immunity to malaria. Med Sci. 2006;22(8–9):739–744.10.1051/medsci/20062289739
  • Schmidt S, Tramsen L, Lehrnbecher T. Natural ailler cells in antifungal immunity. Front Immunol. 2017;8:e711.10.3389/fimmu.2017.01623
  • Ding H, Yang X, Wei Y. Fusion proteins of NKG2D/NKG2DL in cancer immunotherapy. Int J Mol Sci. 2018;19(1).
  • Turnbaugh PJ, Ridaura VK, Faith JJ, et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Trans Med. 2009; 1 (6):6ra14.
  • Yindom LM, Forbes R, Aka P, et al. Killer-cell immunoglobulin-like receptors and malaria caused by Plasmodium falciparum in The Gambia. Tissue Antigens. 2012;79(2):104–113.10.1111/tan.2012.79.issue-2
  • Luty AJ, Lell B, Schmidt-Ott R, et al. Interferon-gamma responses are associated with resistance to reinfection with Plasmodium falciparum in young African children. J Infect Dis. 1999;179(4):980–988.10.1086/jid.1999.179.issue-4
  • Ojo-Amaize EA, Vilcek J, Cochrane AH, et al. Plasmodium berghei sporozoites are mitogenic for murine T cells, induce interferon, and activate natural killer cells. J Immunol. 1984;133(2):1005–1009.
  • Baratin M, Roetynck S, Lepolard C, et al. Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc Nat Acad Sci. 2005;102(41):14747–14752.10.1073/pnas.0507355102
  • Horowitz A, Behrens RH, Okell L, et al. NK cells as effectors of acquired immune responses: effector CD4+ T cell-dependent activation of NK cells following vaccination. J Immunol. 2010;185(5):2808–2818.10.4049/jimmunol.1000844
  • Artavanis-Tsakonas K, Eleme K, McQueen KL, et al. Activation of a subset of human NK cells upon contact with Plasmodium falciparum-infected erythrocytes. J Immunol. 2003;171(10):5396–5405.10.4049/jimmunol.171.10.5396
  • Baratin M, Roetynck S, Pouvelle B, et al. Dissection of the role of PfEMP1 and ICAM-1 in the sensing of Plasmodium falciparum-infected erythrocytes by natural killer cells. PLoS ONE. 2007;2(2):e228.10.1371/journal.pone.0000228
  • Artavanis-Tsakonas K, Riley EM. Innate immune response to malaria: rapid induction of IFN-gamma from human NK cells by live Plasmodium falciparum-infected erythrocytes. J Immunol. 2002;169(6):2956–2963.10.4049/jimmunol.169.6.2956
  • Chen Q, Amaladoss A, Ye W, et al. Human natural killer cells control Plasmodium falciparum infection by eliminating infected red blood cells. Proc Nat Acad Sci. 2014;111(4):1479–1484.10.1073/pnas.1323318111
  • Patel SS, Wacholtz MC, Duby AD, et al. Analysis of the functional capabilities of CD3+CD4-CD8- and CD3+CD4+CD8+ human T cell clones. J Immunol. 1989;143(4):1108–1117.
  • Goodier M, Fey P, Eichmann K, et al. Human peripheral blood gamma delta T cells respond to antigens of Plasmodium falciparum. Int Immunol. 1992;4(1):33–41.10.1093/intimm/4.1.33
  • Ho M, Webster HK, Tongtawe P, et al. Increased gamma delta T cells in acute Plasmodium falciparum malaria. Immunol Lett. 1990;25(1–3):139–141.10.1016/0165-2478(90)90105-Y
  • Langhorne J, Goodier M, Behr C, et al. Is there a role for gamma delta T cells in malaria? Immunol Today. 1992;13(8):298–300.10.1016/0167-5699(92)90041-5
  • Schofield L, Ioannidis LJ, Karl S, et al. Synergistic effect of IL-12 and IL-18 induces TIM3 regulation of gammadelta T cell function and decreases the risk of clinical malaria in children living in Papua New Guinea. BMC Med. 2017;15(1):114.10.1186/s12916-017-0883-8
  • Salmon D, Vilde JL, Andrieu B, et al. Role of immune serum and complement in stimulation of the metabolic burst of human neutrophils by Plasmodium falciparum. Infect Immun. 1986;51(3):801–806.
  • McCall MB, Netea MG, Hermsen CC, et al. Plasmodium falciparum infection causes proinflammatory priming of human TLR responses. J Immunol. 2007;179(1):162–171.10.4049/jimmunol.179.1.162
  • Leifer CA, Kennedy MN, Mazzoni A, et al. TLR9 is localized in the endoplasmic reticulum prior to stimulation. J Immunol. 2004;173(2):1179–1183.10.4049/jimmunol.173.2.1179
  • Chockalingam A, Brooks JC, Cameron JL, et al. TLR9 traffics through the Golgi complex to localize to endolysosomes and respond to CpG DNA. Immunol Cell Biol. 2009;87(3):209–217.10.1038/icb.2008.101
  • Coban C, Ishii kJ, Kawai T, et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005;201(1):19–25.10.1084/jem.20041836
  • Franklin BS, Parroche P, Ataide MA, et al. Malaria primes the innate immune response due to interferon-gamma induced enhancement of toll-like receptor expression and function. Proc Nat Acad Sci. 2009;106(14):5789–5794.10.1073/pnas.0809742106
  • Torgler R, Bongfen SE, Romero JC, et al. Sporozoite-mediated hepatocyte wounding limits Plasmodium parasite development via MyD88-mediated NF-kappa B activation and inducible NO synthase expression. J Immunol. 2008;180(6):3990–3999.10.4049/jimmunol.180.6.3990
  • Liehl P, Zuzarte-Luís V, Chan J, et al. Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection. Nat Med. 2014;20(1):47–53.10.1038/nm.3424
  • Ocaña-Morgner C, Mota MM, Rodriguez A. Malaria blood stage suppression of liver stage immunity by dendritic cells. J Exp Med. 2003;197(2):143–151.10.1084/jem.20021072
  • Rocha BC, Marques PE, Leoratti FMS, et al. Type I interferon transcriptional signature in neutrophils and low-density granulocytes are associated with tissue damage in malaria. Cell Rep. 2015;13(12):2829–2841.10.1016/j.celrep.2015.11.055

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.