12,550
Views
3
CrossRef citations to date
0
Altmetric
Review

Gene drives to fight malaria: current state and future directions

ORCID Icon & ORCID Icon

References

  • WHO | Eliminating malaria [Internet]. WHO . [cited 2018 Feb 2]. Available from: http://www.who.int/malaria/publications/atoz/eliminating-malaria/en/.
  • WHO | Global vector control response [Internet]. WHO. [cited 2017 Sep 29]. Available from: http://www.who.int/malaria/areas/vector_control/global-vector-control-response/en/.
  • WHO | World malaria report 2017 [Internet]. WHO [cited 2017 Dec 3]. Available from: http://www.who.int/malaria/publications/world-malaria-report-2017/report/en/.
  • WHO | A global brief on vector-borne diseases [Internet]. WHO. [cited 2017 Sep 29]. Available from: http://www.who.int/campaigns/world-health-day/2014/global-brief/en/.
  • Knipling EF. Sterile-male method of population control: successful with some insects, the method may also be effective when applied to other noxious animals. Science. 1959;130:902–904.
  • Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc R Soc B Biol Sci. 2003;270:921–928.10.1098/rspb.2002.2319
  • Gould F, Schliekelman P. Population genetics of autocidal control and strain replacement. Annu Rev Entomol. 2003;49:193–217.
  • Alphey L. Genetic control of mosquitoes. Annu Rev Entomol. 2014;59:205–224.10.1146/annurev-ento-011613-162002
  • Gabrieli P, Smidler A, Catteruccia F. Engineering the control of mosquito-borne infectious diseases. Genome Biol. 2014;15:535.10.1186/s13059-014-0535-7
  • Catteruccia F, Nolan T, Loukeris TG, et al. Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature. 2000;405:35016096.
  • Holt RA, Subramanian GM, Halpern A, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298:129–149.10.1126/science.1076181
  • Curtis CF. Possible use of translocations to fix desirable genes in insect pest populations. Nature. 1968;218:368.10.1038/218368a0
  • Serebrovsky A. On the possibility of a new method for the control of insect pests. Sterile-Male Tech. Erad. Control Harmful Insects Proc Panel Appl Sterile-Male Tech Erad Control Harmful Species Insects Organised Jt. FAOIAEA Div At Energy Food Agric. Vienna 27–31 May 1968. 1969;123–237.
  • Hamilton WD. Extraordinary sex ratios. Science. 1967;156:477–488.10.1126/science.156.3774.477
  • Donald C. Rio, Sharmistha Majumdar*. P transposable elements in Drosophila and other eukaryotic organisms. Microbiol Spectr. 2015;3(2).
  • Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6:741.10.1038/nrmicro1969
  • Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, et al. Stability of the wMel Wolbachia Infection following Invasion into Aedes aegypti Populations. In: Rasgon JL, editor. PLoS Negl Trop Dis. 2014;8:e3115.
  • Schmidt TL, Barton NH, Rašić G, et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLOS Biol. 2017;15:e2001894.10.1371/journal.pbio.2001894
  • Jiggins FM. The spread of Wolbachia through mosquito populations. PLOS Biol. 2017;15:e2002780.10.1371/journal.pbio.2002780
  • Pike A, Dong Y, Dizaji NB, et al. Changes in the microbiota cause genetically modified Anopheles to spread in a population. Science. 2017;357:1396–1399.10.1126/science.aak9691
  • Wang S, Dos-Santos ALA, Huang W, et al. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science. 2017;357:1399–1402.10.1126/science.aan5478
  • Davis S, Bax N, Grewe P. Engineered underdominance allows efficient and economical introgression of traits into pest populations. J Theor Biol. 2001;212:83–98.
  • Akbari OS, Matzen KD, Marshall JM, et al. A synthetic gene drive system for local, reversible modification and suppression of insect populations. Curr Biol. 2013;23:671–677.10.1016/j.cub.2013.02.059
  • Maddalo D, Manchado E, Concepcion CP, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516:423.10.1038/nature13902
  • Buchman AB, Ivy T, Marshall JM, et al. Engineered reciprocal chromosome translocations drive high threshold, reversible population replacement in Drosophila. bioRxiv. 2016;088393.
  • Reeves RG, Bryk J, Altrock PM, et al. First Steps towards Underdominant Genetic Transformation of Insect Populations. In: Franz AWE, editor. PLoS ONE. 2014;9:e97557.
  • Wade MJ, Beeman RW. The population dynamics of maternal-effect selfish genes. Genetics. 1994;138:1309–1314.
  • Beeman RW, Friesen KS, Denell RE. Maternal-effect selfish genes in flour beetles. Science. 1992;256:89–92.10.1126/science.1566060
  • Chen C-H, Huang H, Ward CM, et al. A synthetic maternal-effect selfish genetic element drives population replacement in drosophila. Science. 2007;316:597–600.10.1126/science.1138595
  • Akbari OS, Chen C-H, Marshall JM, et al. Novel synthetic medea selfish genetic elements drive population replacement in drosophila ; a theoretical exploration of medea -dependent population suppression. ACS Synth Biol. 2014;3:915–928.10.1021/sb300079 h
  • Marshall JM, Hay BA. General principles of single-construct chromosomal gene drive. Evol Int J Org Evol. 2012;66:2150–2166.10.1111/evo.2012.66.issue-7
  • Marshall JM, Hay BA. Inverse Medea as a novel gene drive system for local population replacement: a theoretical analysis. J Hered. 2011;102:336–341.10.1093/jhered/esr019
  • Champer J, Buchman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet. 2016;17:146–159.10.1038/nrg.2015.34
  • Buchman A, Marshall J, Ostrovski D, et al. Synthetically engineered medea gene drive system in the Worldwide Crop Pest, D. suzukii. bioRxiv. 2017;162255.
  • Schliekelman P, Ellner S, Gould F. Pest control by genetic manipulation of sex ratio. J Econ Entomol. 2005;98:18–34.10.1093/jee/98.1.18
  • Hickey WA, Craig GB. Genetic distortion of sex ratio in a mosquito. AEDES AEGYPTI. Genetics. 1966;53:1177–1196.
  • Sweeny TL, Barr AR. Sex ratio distortion caused by meiotic drive in a mosquito.Culex pipiens L. Genetics. 1978;88:427–446.
  • Windbichler N, Papathanos PA, Catteruccia F, et al. Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos. Nucleic Acids Res. 2007;35:5922–5933.10.1093/nar/gkm632
  • Windbichler N, Papathanos PA, Crisanti A. Targeting the X chromosome during spermatogenesis induces Y chromosome transmission ratio distortion and early dominant embryo lethality in Anopheles gambiae. In: Stern DL, editor. PLoS Genet. 2008;4:e1000291.
  • Roberto Galizi, Lindsey A. Doyle, Miriam Menichelli, et al. A synthetic sex ratio distortion system for the control of the human malaria mosquito. Nat Commun. 2014;5.
  • Roberto Galizi, Andrew Hammond, Kyros Kyrou, et al. A CRISPR-Cas9 sex-ratio distortion system for genetic control. Sci Rep. 2016;6(1).
  • Deredec A, Burt A, Godfray HCJ. The population genetics of using homing endonuclease genes in vector and pest management. Genetics. 2008;179:2013–2026.10.1534/genetics.108.089037
  • Deredec A, Godfray HCJ, Burt A. Requirements for effective malaria control with homing endonuclease genes. Proc Natl Acad Sci. 2011;108:E874–E880.10.1073/pnas.1110717108
  • Beaghton A, Beaghton PJ, Burt A. Gene drive through a landscape: reaction–diffusion models of population suppression and elimination by a sex ratio distorter. Theor Popul Biol. 2016;108:51–69.10.1016/j.tpb.2015.11.005
  • Chevalier BS, Stoddard BL. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 2001;29:3757–3774.10.1093/nar/29.18.3757
  • Goddard MR, Greig D, Burt A. Outcrossed sex allows a selfish gene to invade yeast populations. Proc R Soc Lond B Biol Sci. 2001;268:2537–2542.10.1098/rspb.2001.1830
  • Belfort M, Perlman PS. Mechanisms of intron mobility. J Biol Chem. 1995;270:30237–30240.10.1074/jbc.270.51.30237
  • Belfort M, Roberts RJ. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 1997;25:3379–3388.10.1093/nar/25.17.3379
  • Stoddard BL. Homing endonuclease structure and function. Q Rev Biophys. 2005;38:49–95.
  • Windbichler N, Menichelli M, Papathanos PA, et al. A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. Nature. 2011;473:212–215.
  • Chan Y-S, Naujoks DA, Huen DS, et al. Insect population control by homing endonuclease-based gene drive: an evaluation in drosophila melanogaster. Genetics. 2011;188:33–44.10.1534/genetics.111.127506
  • Chan Y-S, Huen DS, Glauert R, et al. Optimising homing endonuclease gene drive performance in a semi-refractory species: the drosophila melanogaster experience. PLoS ONE. 2013;8:e54130.10.1371/journal.pone.0054130
  • Thyme SB, Boissel SJS, Arshiya Quadri S, et al. Reprogramming homing endonuclease specificity through computational design and directed evolution. Nucleic Acids Res. 2014;42:2564–2576.10.1093/nar/gkt1212
  • Takeuchi R, Lambert AR, Mak AN-S, et al. Tapping natural reservoirs of homing endonucleases for targeted gene modification. Proc Natl Acad Sci. 2011;108:13077–13082.10.1073/pnas.1107719108
  • BL. Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob. DNA. 2014;5:7.
  • Werther R, Hallinan JP, Lambert AR, et al. Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity. Nucleic Acids Res. 2017;45:8621–8634.10.1093/nar/gkx544
  • Kim HJ, Lee HJ, Kim H, et al. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 2009;19:1279–1288.10.1101/gr.089417.108
  • Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29:143–148.10.1038/nbt.1755
  • Simoni A, Siniscalchi C, Chan Y-S, et al. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster. Nucleic Acids Res. 2014;42:7461–7472.10.1093/nar/gku387
  • Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821.10.1126/science.1225829
  • Esvelt KM, Smidler AL, Catteruccia F, et al. Emerging Technology: Concerning RNA-guided gene drives for the alteration of wild populations. eLife. 2014;3:e03401.
  • DiCarlo JE, Norville JE, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. 2013;41:4336–4343.10.1093/nar/gkt135
  • Gantz VM, Jasinskiene N, Tatarenkova O, et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci. 2015;112:E6736–E6743.10.1073/pnas.1521077112
  • Gantz VM, Bier E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science. 2015;348:442–444.10.1126/science.aaa5945
  • Hammond A, Galizi R, Kyrou K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34:78–83.10.1038/nbt.3439
  • Sinkins SP, Gould F. Gene drive systems for insect disease vectors. Nat Rev Genet. 2006;7:427–435.10.1038/nrg1870
  • Burt A. Heritable strategies for controlling insect vectors of disease. Phil Trans R Soc B. 2014;369:20130432.10.1098/rstb.2013.0432
  • Bull JJ. Lethal gene drive selects inbreeding. Evol Med Public Health. 2016;2017:1–16.10.1093/emph/eow030
  • Leftwich PT, Bolton M, Chapman T. Evolutionary biology and genetic techniques for insect control. Evol Appl. 2016;9:212–230.10.1111/eva.12280
  • Lindholm AK, Dyer KA, Firman RC, et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol Evol. 2016;31:315–326.10.1016/j.tree.2016.02.001
  • Miles A, Harding NJ, Bottà G, et al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature [Internet]. 2017 [cited 2017 Dec 4]; Available from: http://www.nature.com/doifinder/10.1038/nature24995.
  • Truong LN, Li Y, Shi LZ, et al. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci USA. 2013;110:7720–7725.10.1073/pnas.1213431110
  • Champer J, Reeves R, Oh SY, et al. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. PLoS Genet. 2017;13:e1006796.10.1371/journal.pgen.1006796
  • Hailong Wang, Xingzhi Xu. Microhomology-mediated end joining: new players join the team. Cell Biosci. 2017;7(1).
  • Hammond AM, Kyrou K, Bruttini M, et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLOS Genet. 2017;13:e1007039.10.1371/journal.pgen.1007039
  • Unckless RL, Clark AG, Messer PW. Evolution of resistance against CRISPR/Cas9 gene drive. Genetics. 2017;205:827–841.10.1534/genetics.116.197285
  • Marshall JM, Buchman A, Sánchez CHM, et al. Overcoming evolved resistance to population-suppressing homing-based gene drives. Sci Rep. [Internet]. 2017 [cited 2017 Dec 4]; 7. Available from: http://www.nature.com/articles/s41598-017-02744-7.
  • Tsai SQ, Wyvekens N, Khayter C, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014;32:569.10.1038/nbt.2908
  • Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell. 2015;163:759–771.10.1016/j.cell.2015.09.038
  • Noble C, Min J, Olejarz J, et al. Daisy-chain gene drives for the alteration of local populations. bioRxiv. 2016;057307.
  • Marshall J, Akbari O. Can CRISPR-based gene drive be confined in the wild? A question for molecular and population biology. bioRxiv. 2017;173914.
  • Kim D, Bae S, Park J, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 2015;12:237.10.1038/nmeth.3284
  • Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33:187.10.1038/nbt.3117
  • Tsai SQ, Nguyen NT, Malagon-Lopez J, et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets. Nat Methods. 2017;14:607.10.1038/nmeth.4278
  • Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets. Nature. 2016;529:490–495.10.1038/nature16526
  • Kleinstiver BP, Tsai SQ, Prew MS, et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol. 2016;34:869.10.1038/nbt.3620
  • Slaymaker IM, Gao L, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351:84–88.10.1126/science.aad5227
  • Shen B, Zhang W, Zhang J, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11:399.10.1038/nmeth.2857
  • Kim D, Kim J, Hur JK, et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol. 2016;34:863.10.1038/nbt.3609
  • Akbari OS, Bellen HJ, Bier E, et al. Safeguarding gene drive experiments in the laboratory. Science. 2015;349:927–929.10.1126/science.aac7932
  • Committee on Gene Drive Research in Non-Human Organisms: Recommendations for Responsible Conduct, Board on Life Sciences, Division on Earth and Life Studies, et al. Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values [Internet]. Washington, DC: National Academies Press; 2016 [cited 2017 Dec 4]. Available from: http://www.nap.edu/catalog/23405.
  • Adelman Z, Akbari O, Bauer J, et al. Rules of the road for insect gene drive research and testing [Internet]. Nat Biotechnol. 2017 [cited 2017 Dec 4]. Available from: https://www.nature.com/articles/nbt.3926.
  • DiCarlo JE, Chavez A, Dietz SL, et al. Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. 2015;33:1250.10.1038/nbt.3412
  • Klein TA, Windbichler N, Deredec A, et al. Infertility resulting from transgenic I-PpoI male Anopheles gambiae in large cage trials. Pathog Glob Health. 2012;106:20–31.10.1179/2047773212Y.0000000003
  • Luca Facchinelli, Laura Valerio, Rosemary S Lees, et al. Stimulating Anopheles gambiae swarms in the laboratory: application for behavioural and fitness studies. Malar J. 2015;14(1).
  • Vella MR, Gunning CE, Lloyd AL, et al. Evaluating strategies for reversing CRISPR-Cas9 gene drives. Sci Rep. 2017;7:11038.10.1038/s41598-017-10633-2
  • Wu B, Luo L, Gao XJ. Cas9-triggered chain ablation of cas9 as a gene drive brake [Internet]. Nat Biotechnol. 2016 [cited 2017 Dec 4]. Available from: https://www.nature.com/articles/nbt.3444.
  • Gantz VM, Bier E. The dawn of active genetics. BioEssays. 2016;38:50–63.10.1002/bies.201500102
  • Oye KA, Esvelt K, Appleton E, et al. Regulating gene drives. Science. 2014;345:626–628.10.1126/science.1254287
  • Benedict MQ, Burt A, Capurro ML, et al. Recommendations for laboratory containment and management of gene drive systems in arthropods. Vector-Borne Zoonotic Dis. [Internet]. 2017 [cited 2017 Dec 4]; Available from: http://online.liebertpub.com/doi/10.1089/vbz.2017.2121.