273
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Comparative genome analysis of Alkhumra hemorrhagic fever virus with Kyasanur forest disease and tick-borne encephalitis viruses by the in silico approach

ORCID Icon, , &

References

  • Kuno G, Chang G-JJ, Tsuchiya KR, et al. Phylogeny of the genus Flavivirus. J Virol. 1998;72:73–83.
  • Zaki AM. Isolation of a flavivirus related to the tick-borne encephalitis complex from human cases in Saudi Arabia. Trans R Soc Trop Med Hyg. 1997;91:179–181.10.1016/S0035-9203(97)90215-7
  • Pijlman GP, Funk A, Kondratieva N, et al. A highly structured, nuclease-resistant, noncoding RNA produced by Flaviviruses is required for pathogenicity. Cell Host Microb. 2008;4:579–591.10.1016/j.chom.2008.10.007
  • Bessaud M, Grard G, Peyrefitte CN, et al. Identification and enzymatic characterization of NS2B-NS3 protease of Alkhurma virus, a class-4 flavivirus. Virus Res. 2005;107:57–62.10.1016/j.virusres.2004.06.015
  • Pastorino BAM, Peyrefitte CN, Grandadam M, et al. Mutagenesis analysis of the NS2B determinants of the Alkhurma virus NS2B-NS3 protease activation. J Gen Virol. 2006;87:3279–3283.10.1099/vir.0.82088-0
  • Madani TA, Abuelzein E-TME, Azhar EI, et al. Thermal inactivation of Alkhumra hemorrhagic fever virus. Arch Virol. 2014;159:2687–2691.10.1007/s00705-014-2134-z
  • Alzahrani AG, Al Shaiban HM, Al Mazroa MA, et al. Alkhurma hemorrhagic fever in humans, Najran, Saudi Arabia. Emerg Infect Dis. 2010;16:1882–1888.10.3201/eid1612.100417
  • Charrel RN, Fagbo S, Moureau G, et al. Alkhurma hemorrhagic fever virus in Ornithodoros savignyi ticks. Emerg Infect Dis. 2007;13:153–155.10.3201/eid1301.061094
  • Mahdi M, Erickson BR, Comer JA, et al. Kyasanur forest disease virus Alkhurma subtype in ticks, Najran Province, Saudi Arabia. Emerg Infect Dis. 2011;17:945–947.10.3201/eid1705.101824
  • Madani TA. Alkhumra virus infection, a new viral hemorrhagic fever in Saudi Arabia. J Infect. 2005;51:91–97.10.1016/j.jinf.2004.11.012
  • Madani TA, Azhar EI, Abuelzein E-TME, et al. Alkhumra (Alkhurma) virus outbreak in Najran, Saudi Arabia: epidemiological, clinical, and laboratory characteristics. J. Infect. 2011;62:67–76.10.1016/j.jinf.2010.09.032
  • Charrel RN, Lamballerie X de, Zaki AM Human cases of hemorrhagic fever in Saudi Arabia due to a newly discovered flavivirus, Alkhurma hemorrhagic fever virus. In: Lu, Y, Essex MB, editors. Emerging infections in Asia. Springer US; 2008 [cited 2017 Jun 11]. p. 179–192. Available from: http://link.springer.com/chapter/10.1007/978-0-387-75722-3_11.10.1007/978-0-387-75722-3
  • Memish ZA, Albarrak A, Almazroa MA, et al. Seroprevalence of Alkhurma and other hemorrhagic fever viruses, Saudi Arabia. Emerg Infect Dis. 2011;17:2316–2318.10.3201/eid1712.110658
  • Memish ZA, Fagbo SF, Osman Ali A, et al. Is the epidemiology of Alkhurma hemorrhagic fever changing? A three-year overview in Saudi Arabia. PLoS ONE. 2014;9:e85564.10.1371/journal.pone.0085564
  • Horton KC, Fahmy NT, Watany N, et al. Crimean Congo hemorrhagic fever virus and Alkhurma (Alkhumra) virus in ticks in Djibouti. Vector Borne Zoonotic Dis. Larchmt. N. 2016;16:680–682.10.1089/vbz.2016.1951
  • Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729.10.1093/molbev/mst197
  • Campanella JJ, Bitincka L, Smalley J. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics. 2003;4:29.10.1186/1471-2105-4-29
  • Martin DP, Murrell B, Golden M, et al. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. [Internet]. 2015 [cited 2017 Jun 11];1. Available from: https://academic.oup.com/ve/article/1/1/vev003/2568683/RDP4-Detection-and-analysis-of-recombination
  • Lemey P, Posada D Recombination. Phylogenetic Handb Pract Approach Phylogenetic Anal. Hypothesis Test. [Internet]. 2nd ed. Cambridge: Cambridge University Press; 2009 [cited 2017 Jun 11]. p. 491–549. Available from: http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521877107&ss=toc
  • Delport W, Poon AFY, Frost SDW, et al. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinforma Oxf Engl. 2010;26:2455–2457.10.1093/bioinformatics/btq429
  • Palanisamy N, Osman N, Ohnona F, et al. Does antiretroviral treatment change HIV-1 codon usage patterns in its genes: a preliminary bioinformatics study. AIDS Res Ther. [Internet]. 2017;14. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5237184/
  • Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3:418–426.
  • Suzuki Y, Gojobori T. A method for detecting positive selection at single amino acid sites. Mol Biol Evol. 1999;16:1315–1328.10.1093/oxfordjournals.molbev.a026042
  • Kosakovsky Pond SL, Frost SDW. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005;22:1208–1222.10.1093/molbev/msi105
  • Hansen JE, Lund O, Tolstrup N, et al. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J. 1998;15:115–130.10.1023/A:1006960004440
  • Petersen TN, Brunak S, von Heijne G, et al. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–786.10.1038/nmeth.1701
  • Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA Websuite. Nucleic Acids Res. 2008;36:W70–W74.10.1093/nar/gkn188
  • Kato Y, Sato K, Hamada M, et al. RactIP: fast and accurate prediction of RNA-RNA interaction using integer programming. Bioinforma Oxf Engl. 2010;26:i460–i466.10.1093/bioinformatics/btq372
  • Kelley LA, Mezulis S, Yates CM, et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–858.10.1038/nprot.2015.053
  • Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J. 2011;101:2525–2534.10.1016/j.bpj.2011.10.024
  • Laskowski RA. PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res. 2001;29:221–222.10.1093/nar/29.1.221
  • Bowie JU, Lüthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253:164–170.10.1126/science.1853201
  • Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83–85.10.1038/356083a0
  • Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci Publ Protein Soc. 1993;2:1511–1519.10.1002/pro.v2:9
  • Pontius J, Richelle J, Wodak SJ. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol. 1996;264:121–136.10.1006/jmbi.1996.0628
  • Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–W410.10.1093/nar/gkm290
  • Gelly J-C, Joseph AP, Srinivasan N, et al. iPBA: a tool for protein structure comparison using sequence alignment strategies. Nucleic Acids Res. 2011;39:W18–W23.10.1093/nar/gkr333
  • Andersson SG, Kurland CG. Codon preferences in free-living microorganisms. Microbiol Rev. 1990;54:198–210.
  • Grantham R, Gautier C, Gouy M, et al. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 1980;8:r49–r62.
  • Hershberg R, Petrov DA. Selection on codon bias. Annu Rev Genet. 2008;42:287–299.10.1146/annurev.genet.42.110807.091442
  • Li M, Kao E, Gao X, et al. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature. 2012;491:125–128.10.1038/nature11433
  • Belikov SI, Kondratov IG, Potapova UV, et al. The relationship between the structure of the tick-borne encephalitis virus strains and their pathogenic properties. PLoS ONE. 2014;9:e94946.10.1371/journal.pone.0094946
  • Castrignanò T, Meo D, D’Onorio P, et al. The PMDB protein model database. Nucleic Acids Res. 2006;34:D306–D309.10.1093/nar/gkj105
  • Kumar A, Singh HN, Pareek V, et al. A possible mechanism of Zika virus associated microcephaly: imperative role of retinoic acid response element (RARE) consensus sequence repeats in the viral genome. Front Hum Neurosci. 2016;10:403.
  • Dodd KA, Bird BH, Khristova ML, et al. Ancient ancestry of KFDV and AHFV revealed by complete genome analyses of viruses isolated from ticks and mammalian hosts. PLoS Negl Trop Dis. 2011;5:e1352.10.1371/journal.pntd.0001352
  • Zhu Z, Chan JF-W, Tee K-M, et al. Comparative genomic analysis of pre-epidemic and epidemic Zika virus strains for virological factors potentially associated with the rapidly expanding epidemic. Emerg Microbes Infect. 2016;5:e22.10.1038/emi.2016.48
  • Ruiz-Aymá G, Tovar-Herrera OE, González-Alvarez R, et al. Mining the Alkhumra hemorrhagic fever virus genomes in 2015. Southwest Entomol. 2016;41:87–97.10.3958/059.041.0110
  • Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–120.10.1007/BF01731581
  • Kofler RM, Hoenninger VM, Thurner C, et al. Functional analysis of the tick-borne encephalitis virus cyclization elements indicates major differences between mosquito-borne and tick-borne flaviviruses. J Virol. 2006;80:4099–4113.10.1128/JVI.80.8.4099-4113.2006
  • Mohabatkar H. Computer-based comparison of structural features of envelope protein of Alkhurma hemorrhagic fever virus with the homologous proteins of two closest viruses. Protein Pept Lett. 2011;18:559–567.10.2174/092986611795222696
  • Poorinmohammad N, Mohabatkar H. Homology modeling and conformational epitope prediction of envelope protein of Alkhumra haemorrhagic fever virus. J Arthropod-Borne Dis. 2014;9:116–124.
  • Flint M, McMullan LK, Dodd KA, et al. Inhibitors of the tick-borne, hemorrhagic fever-associated flaviviruses. Antimicrob Agents Chemother. 2014;58:3206–3216.10.1128/AAC.02393-14
  • Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014;42:W320–W324.10.1093/nar/gku316

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.