152
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Adevonin, a novel synthetic antimicrobial peptide designed from the Adenanthera pavonina trypsin inhibitor (ApTI) sequence

, , , , , , ORCID Icon, , , ORCID Icon, , & show all

References

  • Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36(6):697–705.
  • Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529(7586):336.
  • Organization WH. Global action plan on antimicrobial resistance. 2015. 2017.
  • Ye H. Molecular design of antimicrobial peptides based on hemagglutinin fusion domain to combat antibiotic resistance in bacterial infection. J Pept Sci. 2018;24(3):e3068.
  • Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012;32(2):143–171.
  • Wimley WC. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol. 2010;5(10):905–917.
  • Takahashi D, Shukla SK, Prakash O, et al. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie. 2010;92(9):1236–1241.
  • Wang G. Antimicrobial peptides: discovery, design and novel therapeutic strategies. Wallingford, Oxforshire, (UK): CABI; 2017.
  • McGrath DM, Barbu EM, Driessen WH, et al. Mechanism of action and initial evaluation of a membrane active all-D-enantiomer antimicrobial peptidomimetic. Proc Natl Acad Sci USA. 2013;110(9):3477–3482.
  • Fjell CD, Hiss JA, Hancock RE, et al. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov. 2012;11(1):37.
  • Farris M, Steinberg A. Mitrecin A, an endolysin‐like bacteriolytic enzyme from a newly isolated soil streptomycete. Lett Appl Microbiol. 2014;58(5):493–502.
  • Waghu FH, Barai RS, Gurung P, et al. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2015;44(D1):D1094–D1097.
  • Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016;44(D1):D1087–D1093.
  • Richardson M, Campos FAP, Xavier-Filho J, et al. The amino acid sequence and reactive (inhibitory) site of the major trypsin isoinhibitor (DE5) isolated from seeds of the Brazilian Carolina tree (Adenanthera pavonina L.). Biochim Biophys Acta. 1986;872(1–2):134–140.
  • CLSI.Performance standards for antimicrobial susceptibility testing. Wayne (PA): Clinical and Laboratory Standards Institute; 2012.
  • Uggerhøj LE, Poulsen TJ, Munk JK, et al. Rational design of alpha-helical antimicrobial peptides: do’s and don’ts. ChemBioChem. 2015;16(2):242–253.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.
  • Maguire R, Duggan O, Kavanagh K. Evaluation of Galleria mellonella larvae as an in vivo model for assessing the relative toxicity of food preservative agents. Cell Biol Toxicol. 2016;32(3):209–216.
  • Mitić-Ćulafić D, Vuković-Gačić BS, Knežević-Vukčević JB, et al. Comparative study on the antibacterial activity of volatiles from sage (Salvia officinalis L.). Arch Biol Sci. 2005;57(3):173–178.
  • Zhou K, Zhou W, Li P, et al. Mode of action of pentocin 31-1: an antilisteria bacteriocin produced by Lactobacillus pentosus from Chinese traditional ham. Food Control. 2008;19(8):817–822.
  • Vaara M, Vaara T. Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and-resistant Salmonella typhimurium. Antimicrob Agents Chemother. 1981;19(4):578–583.
  • Yang J, Yan R, Roy A, et al. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8.
  • Laskowski RA, MacArthur MW, Moss DS, et al. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26(2):283–291.
  • Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35(suppl_2):W407–W410.
  • DeLano WL. The PyMOL molecular graphics system version 2.0. San Carlos (CA); 2002.
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25.
  • Wu EL, Cheng X, Jo S, et al. CHARMM‐GUI membrane builder toward realistic biological membrane simulations. J Comput Chem. 2014;35(27):1997–2004.
  • Lu Z, Zhai L, Wang H, et al. Novel families of antimicrobial peptides with multiple functions from skin of Xizang plateau frog, Nanorana parkeri. Biochimie. 2010;92(5):475–481.
  • Wang H, Lu Y, Zhang X, et al. The novel antimicrobial peptides from skin of Chinese broad-folded frog, Hylarana latouchii (Anura: ranidae). Peptides. 2009;30(2):273–282.
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–242.
  • Lohner K. Membrane-active antimicrobial peptides as template structures for novel antibiotic agents. Curr Top Med Chem. 2017;17(5):508–519.
  • Shagaghi N, Palombo EA, Clayton AH, et al. Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. World J Microbiol Biotechnol. 2018;34(4):62.
  • Cardoso MH, Ribeiro SM, Nolasco DO, et al. A polyalanine peptide derived from polar fish with anti-infectious activities. Sci Rep. 2016;6:21385.
  • Beschiaschvili G, Seelig J. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry. 1990;29(1):52–58.
  • Maloy WL, Kari UP. Structure–activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–122.
  • Subbalakshmi C, Krishnakumari V, Sitaram N, et al. Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. J Biosci (Bangalore). 1998;23(1):9–13.
  • Gazit E, Boman A, Boman HG, et al. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry. 1995;34(36):11479–11488.
  • Melo MN, Ferre R, Castanho MA. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nature Rev Microbiol. 2009;7(3):245.
  • Park IY, Park CB, Kim MS, et al. Parasin I, an antimicrobial peptide derived from histone H2A in the catfish, Parasilurus asotus. FEBS Lett. 1998;437(3):258–262.
  • Rodriguez-Granillo A, Annavarapu S, Zhang L, et al. Computational design of thermostabilizing D-amino acid substitutions. J Am Chem Soc. 2011;133(46):18750–18759.
  • Hirt H, Hall JW, Larson E, et al. A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii. PLoS One. 2018;13(3):e0194900.
  • Li W, Sun Z, O’Brien-Simpson NM, et al. The Nα-Methyl effect arginine of selective substitution D-or on the activity of the proline-rich antimicrobial peptide, Chex1-Arg20. Antimicrob Anticancer Pept. 2018;5(1):1–5.
  • Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta. 2009 Nov 27;1794(5):808–816. PubMed PMID: PMC2696358.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.