2,340
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Can Plasmodium’s tricks for enhancing its transmission be turned against the parasite? New hopes for vector control

ORCID Icon, ORCID Icon &

References

  • Davidson G, Draper CC. Field studies of some of the basic factors concerned in the transmission of malaria. Trans R Soc Trop Med Hyg. 1953;47:522–535.
  • Smith DL, Battle KE, Hay SI, et al. Ross, macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 2012;8:e1002588.
  • Lemasson JJ, Fontenille D, Lochouarn L, et al. Comparison of behavior and vector efficiency of Anopheles gambiae and An. arabiensis (Diptera: Culicidae)in Barkedji, a Sahelian area of Senegal. J Med Entomol. 1997;34:396–403.
  • Busula AO, Verhulst NO, Bousema T, et al. Mechanisms of Plasmodium-enhanced attraction of mosquito vectors. Trends Parasitol. 2017;33:961–973.
  • Bowen MF. The sensory physiology of host-seeking behavior in mosquitoes. Annu Rev Entomol. 1991;36:139–158.
  • Takken W, Knols BG. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44:131–157.
  • Carey AF, Wang G, Su CY, et al. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 2010;464:66–71.
  • Omondi BA, Majeed S, Ignell R. Functional development of carbon dioxide detection in the maxillary palp of Anopheles gambiae. J Exp Biol. 2015;218:2482–2488.
  • Rinker DC, Pitts RJ, Zhou X, et al. Blood meal-induced changes to antennal transcriptome profiles reveal shifts in odor sensitivities in Anopheles gambiae. Proc Natl Acad Sci USA. 2013;110:8260–8265.
  • Frame GW, Strauss WG, Maibach HI. Carbon dioxide emission of the human arm and hand. J Invest Dermatol. 1972;59:155–159.
  • Emami SN, Lindberg BG, Hua S, et al. A key malaria metabolite modulates vector blood seeking, feeding, and susceptibility to infection. Science. 2017;355:1076–1080.
  • Khan AA, Maibach HI, Strauss WG. The role of convection currents in mosquito attraction to human skin. Mosq News. 1968;28:462–464.
  • Takken W, Verhulst N. Host preferences of blood-feeding mosquitoes. Annu Rev Entomol. 2013;58:433–453.
  • De Jong R, Knols BG. Selection of biting sites on man by two malaria mosquito species. Experientia. 1995;51:80–84.
  • Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012;28:114–121.
  • Jung JW, Baeck S-J, Perumalsamy H, et al. A novel olfactory pathway is essential for fast and efficient blood-feeding in mosquitoes. Sci Rep. 2015;5:13444.
  • Koella JC, Packer MJ. Malaria parasites enhance blood-feeding of their naturally infected vector Anopheles punctulatus. Parasitology. 1996;113(Pt 2):105–109.
  • Gary RE Jr., Foster WA. Diel timing and frequency of sugar feeding in the mosquito Anopheles gambiae, depending on sex, gonotrophic state and resource availability. Med Vet Entomol. 2006;20:308–316.
  • Klowden MJ, Briegel H. Mosquito gonotrophic cycle and multiple feeding potential: contrasts between Anopheles and Aedes (Diptera: Culicidae). J Med Entomol. 1994;31:618–622.
  • Kaufmann C, Briegel H. Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. J Vector Ecol. 2004;29:140–153.
  • Cator LJ, Lynch PA, Read AF, et al. Do malaria parasites manipulate mosquitoes? Trends Parasitol. 2012;28:466–470.
  • Baton LA, Ranford-Cartwright LC. Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito. Trends Parasitol. 2005;21:573–580.
  • Cowman AF, Healer J, Marapana D, et al. Malaria: biology and disease. Cell. 2016;167:610–624.
  • Talman AM, Domarle O, McKenzie FE, et al. Gametocytogenesis: the puberty of Plasmodium falciparum. Malar J. 2004;3:24.
  • Vafa Homann M, Emami SN, Yman V, et al. Detection of malaria parasites after treatment in travelers: A 12-months longitudinal study and statistical modelling analysis. EBioMedicine. 2017;25:66–72.
  • Stone W, Goncalves BP, Bousema T, et al. Assessing the infectious reservoir of falciparum malaria: past and future. Trends Parasitol. 2015;31:287–296.
  • Taylor LH, Read AF. Why so few transmission stages? Reproductive restraint by malaria parasites. Parasitol Today. 1997;13:135–140.
  • Schwartz A, Koella JC. Trade-offs, conflicts of interest and manipulation in Plasmodium-mosquito interactions. Trends Parasitol. 2001;17:189–194.
  • Koella JC. Malaria as a manipulator. Behav Processes. 2005;68:271–273.
  • De Moraes CM, Stanczyk NM, Betz HS, et al. Malaria-induced changes in host odors enhance mosquito attraction. Proc Natl Acad Sci USA. 2014;111:11079–11084.
  • De Moraes CM, Wanjiku C, Stanczyk NM, et al. Volatile biomarkers of symptomatic and asymptomatic malaria infection in humans. Proc Natl Acad Sci USA. 2018;115:5780–5785.
  • Schaber CL, Katta N, Bollinger LB, et al. Breathprinting reveals malaria-associated biomarkers and mosquito attractants. J Infect Dis. 2018;217:1553–1560.
  • Berna A, Schaber C, Katta N, et al. Breathprinting reveals malaria-associated biomarkers and mosquito attractants. In Vitro Cell Dev-An. 2018;54:S7–S7.
  • Cornet S, Nicot A, Rivero A, et al. Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecol Lett. 2013;16:323–329.
  • Lacroix R, Mukabana WR, Gouagna LC, et al. Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol. 2005;3:e298.
  • Batista EP, Costa EF, Silva AA. Anopheles darlingi (Diptera: Culicidae) displays increased attractiveness to infected individuals with Plasmodium vivax gametocytes. Parasit Vectors. 2014;7:251.
  • Smallegange RC, van Gemert G-J, van de Vegte-bolmer M, et al. Malaria infected mosquitoes express enhanced attraction to human odor. Plos One. 2013;8:e63602.
  • Hurd H. Manipulation of medically important insect vectors by their parasites. Annu Rev Entomol. 2003;48:141–161.
  • Suh E, Bohbot J, Zwiebel LJ. Peripheral olfactory signaling in insects. Curr Opin Insect Sci. 2014;6:86–92.
  • Tauxe GM, MacWilliam D, Boyle SM, et al. Targeting a dual detector of skin and CO2 to modify mosquito host seeking. Cell. 2013;155:1365–1379.
  • Suh E, Choe DH, Saveer AM, et al. Suboptimal larval habitats modulate oviposition of the malaria vector mosquito Anopheles coluzzii. PLoS One. 2016;11:e0149800.
  • van Loon JJ, Smallegange RC, Bukovinszkiné-Kiss G, et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol. 2015;41:567–573.
  • Zwiebel LJ, Takken W. Olfactory regulation of mosquito-host interactions. Insect Biochem Mol Biol. 2004;34:645–652.
  • Robinson A, Busula AO, Voets MA, et al. Plasmodium-associated changes in human odor attract mosquitoes. Proc Natl Acad Sci USA. 2018;115:E4209–E4218.
  • Kelly M, Su C-YSchaber C, et al. Malaria parasites produce volatile mosquito attractants. Mbio. 2015;6:e00235–15.
  • Zhang B, Watts KM, Hodge D, et al. A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling. Biochemistry. 2011;50:3570–3577.
  • Heuston S, Begley MGahan CG, et al. Isoprenoid biosynthesis in bacterial pathogens. Microbiology. 2012;158:1389–1401.
  • Berna AZ, McCarthy JS, Wang RX, et al. Analysis of breath specimens for biomarkers of Plasmodium falciparum infection. J Infect Dis. 2015;212:1120–1128.
  • Busula AO, Bousema T, Mweresa CK, et al. Gametocytemia and attractiveness of Plasmodium falciparum-infected Kenyan children to Anopheles gambiae mosquitoes. J Infect Dis. 2017;216:291–295.
  • Liu C, Emami SN, Pettersson J, et al. Vgamma9Vdelta2 T cells proliferate in response to phosphoantigens released from erythrocytes infected with asexual and gametocyte stage Plasmodium falciparum. Cell Immunol. 2018;334:11–19.
  • Gowda DC, Gupta P, Davidson EA. Glycosylphosphatidylinositol anchors represent the major carbohydrate modification in proteins of intraerythrocytic stage Plasmodium falciparum. J Biol Chem. 1997;272:6428–6439.
  • Macrae JI, Lopaticki S, Maier AG, et al. Plasmodium falciparum is dependent on de novo myo-inositol biosynthesis for assembly of GPI glycolipids and infectivity. Mol Microbiol. 2014;91:762–776.
  • Arrighi RB, Faye I. Plasmodium falciparum GPI toxin: a common foe for man and mosquito. Acta Trop. 2010;114:162–165.
  • Lim J, Gowda DC, Krishnegowda G, et al. Induction of nitric oxide synthase in Anopheles stephensi by Plasmodium falciparum: mechanism of signaling and the role of parasite glycosylphosphatidylinositols. Infect Immun. 2005;73:2778–2789.
  • Arrighi RB, Debierre-Grockiego F, Schwarz RT, et al. The immunogenic properties of protozoan glycosylphosphatidylinositols in the mosquito Anopheles gambiae. Dev Comp Immunol. 2009;33:216–223.
  • Francis SE, Sullivan DJ Jr., Goldberg DE. Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. Annu Rev Microbiol. 1997;51:97–123.
  • Akman-Anderson L, Olivier M, Luckhart S. Induction of nitric oxide synthase and activation of signaling proteins in Anopheles mosquitoes by the malaria pigment, hemozoin. Infect Immun. 2007;75:4012–4019.
  • Belmant C, Espinosa E, Halary F, et al. A chemical basis for selective recognition of nonpeptide antigens by human delta T cells. Faseb J. 2000;14:1669–1670.
  • Morita CT, Jin C, Sarikonda G, et al. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev. 2007;215:59–76.
  • Frank A, Groll M. The methylerythritol phosphate pathway to Isoprenoids. Chem Rev. 2017;117:5675–5703.
  • Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep. 1999;16:565–574.
  • Jomaa H, Wiesner J, Sanderbrand S, et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science. 1999;285:1573–1576.
  • Yeh E, DeRisi JL, Striepen B. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol. 2011;9:e1001138.
  • Galun R. The evolution of purinergic receptors involved in recognition of a blood meal by hematophagous insects. Mem Inst Oswaldo Cruz. 1987;82(Suppl 3):5–9.
  • Werner-Reiss U, Galun R, Crnjar R, et al. Factors modulating the blood feeding behavior and the electrophysiological responses of labral apical chemoreceptors to adenine nucleotides in the mosquito Aedes aegypti (Culicidae). J Insect Physiol. 1999;45:801–808.
  • Galun R, Margalit J. Adenine nucleotides as feeding stimulants of the tsetse fly Glossina austeni Newst. Nature. 1969;222:583–584.
  • Lall SB. Feeding behavior of haematophagous tabanids (Diptera). J Med Entomol. 1970;7:115–119.
  • Friend WG, Smith JJ. Factors affecting feeding by bloodsucking insects. Annu Rev Entomol. 1977;22:309–331.
  • Galun R, Kindler SH. Chemical specificity of the feeding response in Hirudo medicinalis (L.). Comp Biochem Physiol. 1966;17:69–73.
  • Friend WG, Smith JJ. Feeding in Rhodnius prolixus: mouthpart activity and salivation, and their correlation with changes of electrical resistance. J Insect Physiol. 1971;17:233–243.
  • Luckhart S, Riehle MA. The insulin signaling cascade from nematodes to mammals: insights into innate immunity of Anopheles mosquitoes to malaria parasite infection. Dev Comp Immunol. 2007;31:647–656.
  • Anderson RA, Koella JC, Hurd H. The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle. Proc R Soc B Biol Sci. 1999;266:1729–1733.
  • Koella JC, Sorensen FL, Anderson RA. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proc Biol Sci. 1998;265:763–768.
  • Koella JC, Sorense FL. Effect of adult nutrition on the melanization immune response of the malaria vector Anopheles stephensi. Med Vet Entomol. 2002;16:316–320.
  • Shiff C. Integrated approach to malaria control. Clin Microbiol Rev. 2002;15:278–293.
  • Sergiev VP, Gasymov EI. The world health organization new global technical strategy for 2015–2030. Med Parazitol (Mosk). 2017;1:59–62.
  • World Health Organization (WHO). Guideline for the treatment for malaria. 3rd ed. Geneva, Switzerland; 2015.
  • Mathison BA, Pritt BS, Kraft CS. Update on malaria diagnostics and test utilization. J Clin Microbiol. 2017;55:2009–2017.
  • World Health Organization (WHO). World malaria report. Geneva, Switzerland; 2018.
  • Aung T, White C, Montagu D, et al. Improving uptake and use of malaria rapid diagnostic tests in the context of artemisinin drug resistance containment in eastern Myanmar: an evaluation of incentive schemes among informal private healthcare providers. Malar J. 2015;14:105.
  • Wood BR, Bambery KR, Dixon MWA, et al. Diagnosing malaria infected cells at the single cell level using focal plane array Fourier transform infrared imaging spectroscopy. Analyst. 2014;139:4769–4774.
  • McBirney SE, Chen D, Scholtz A, et al. Rapid diagnostic for point-of-care malaria screening. ACS Sens. 2018;3:1264–1270.
  • Gonzales KK, Hansen IA. Artificial diets for mosquitoes. Int J Environ Res Public Health. 2016;13:1267.
  • Mauck KE, De Moraes CM, Mescher MC. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA. 2010;107:3600–3605.
  • Benelli G, Beier JC. Current vector control challenges in the fight against malaria. Acta Trop. 2017;174:91–96.
  • Strode C, Donegan S, Garner P, et al. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11:e1001619.
  • Yohannes M, Boelee E. Early biting rhythm in the Afro-tropical vector of malaria, Anopheles arabiensis, and challenges for its control in Ethiopia. Med Vet Entomol. 2012;26:103–105.
  • Alkenani NA. Influence of the mixtures composed of slow-release insecticide formulations against Aedes aegypti mosquito larvae reared in pond water. Saudi J Biol Sci. 2017;24:1181–1185.
  • Isman MB. A renaissance for botanical insecticides? Pest Manag Sci. 2015;71:1587–1590.
  • Mishra P, Tyagi BK, Chandrasekaran N, et al. Biological nanopesticides: a greener approach towards the mosquito vector control. Environ Sci Pollut Res Int. 2018;25:10151–10163.
  • Okumu FO, Killeen GF, Ogoma S, et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS One. 2010;5:e8951.
  • Lees RS, Knols B, Bellini R, et al. Review: improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop. 2014;132(Suppl):S2–11.
  • Mains JW, Brelsfoard CL, Rose RI, et al. Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes. Sci Rep. 2016;6:33846.
  • Ribeiro JM, Kidwell MG. Transposable elements as population drive mechanisms: specification of critical parameter values. J Med Entomol. 1994;31:10–16.
  • Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220.
  • Kyrou K, Hammond AM, Galizi R, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36:1062–1066.
  • Lambrechts L, Koella JC, Boete C. Can transgenic mosquitoes afford the fitness cost? Trends Parasitol. 2008;24:4–7.
  • Coelho CH, Doritchamou JYA, Zaidi I, et al. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. NPJ Vaccines. 2017;2:34.