229
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Predicted distribution of sand fly (Diptera: Psychodidae) species involved in the transmission of Leishmaniasis in São Paulo state, Brazil, utilizing maximum entropy ecological niche modeling

, , , , , & show all

References

  • Casanova C, Colla-Jacques FE, Hamilton JG, et al. Distribution of Lutzomyia longipalpis chemotype populations in São Paulo state, Brazil. PLoS Negl Trop Dis. 2015;9(3):e0003620.
  • Shimabukuro PH, da Silva TR, Ribeiro FO, et al. Geographical distribution of American cutaneous leishmaniasis and its phlebotomine vectors (Diptera: psychodidae) in the state of São Paulo, Brazil. Parasit Vectors. 2010;3:121.
  • World Health Organization: Weekly epidemiological record. Global leishmaniasis update, 2006-2015, a turning point in leishmaniasis surveillance, World Heal. Organ. 2017;92(38):557–572.
  • Fundação Nacional de Saúde, Manual de controle da Leishmaniose tegumentar americana, Ministério da Saúde. 2000; 1–62.
  • Manual de Vigilância e Controle da Leishmaniose Visceral Americana do Estado de São Paulo. Secretaria de Estado da Saúde, Superintendência de Controle de Endemias - SUCEN e Coordenadoria de Controle de Doenças - CCD. 2006; 11–158.
  • de Carvalho MR, Valença HF, da Silva FJ, et al. Natural Leishmania infantum infection in Migonemyia migonei (França, 1920) (Diptera: psychodidae:Phlebotominae)the putative vector of visceral leishmaniasis in Pernambuco State, Brazil. Acta Trop. 2010;116(1):108–110.
  • Carvalho BM, Rangel EF, Ready PD, et al. Ecological niche modelling predicts Southward expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: psychodidae: phlebotominae), Vector of Leishmania (Leishmania) amazonensis in South America, under Climate Change. PLoS One. 2015;10(11):e0143282.
  • Ministério da Saúde, Saúde de A a Z, Leishmaniose Tegumentar; Leishmaniose Visceral. Cited 2020 Jul 2. https://www.gov.br/saude/pt-br
  • Fonseca ES, D’Andrea LA, Taniguchi HH, et al. Spatial epidemiology of American cutaneous leishmaniasis in a municipality of west São Paulo State, Brazil. J Vector Borne Dis. 2014;51(4):271–275.
  • Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190:231–259.
  • Santana MRM, Bavia ME, Fonseca EOL, et al. Ecological niche models for sand fly species and predicted distribution of Lutzomyia longipalpis (Diptera: psychodidae) and visceral leishmaniasis in Bahia state, Brazil. Environ Monit Assess. 2019;191(Suppl 2):331.
  • IBGE. Malhas digitais municipais. 2010. Cited 2020 Aug 10 https://mapas.ibge.gov.br/index.php
  • WorldClim - Global Climate Data. Cited 2020 Apr 3 https://www.worldclim.org/
  • Peterson AT, Pereira RS, Neves VF. Using epidemiological survey data to infer geographic distributions of leishmaniasis vector species. Rev Soc Bras Med Trop. 2004;37(1):10–14.
  • Galati EAB. Morfologia e taxonomia. In: Rangel EF, Lainson R, editors. Flebotomíneos do Brasil. Rio de Janeiro: Fundação Oswaldo Cruz; 2003. p. 23–52.
  • Shimabukuro PHF, de Andrade AJ, Galati EAB. Checklist of American sand flies (Diptera, Psychodidae, Phlebotominae): genera, species, and their distribution. Zookeys. 2017;660:67–106. DOI:https://doi.org/10.3897/zookeys.660.10508
  • Hageer Y, Esperón-Rodríguez M, Baumgartner JB, et al. Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species? PeerJ. 2017;5:e3446.
  • Schröder W, Schmidt G. Spatial modelling of the potential temperature-dependent transmission of vector-associated diseases in the face of climate change: main results and recommendations from a pilot study in Lower Saxony (Germany). Parasitol Res. 2008;1:S55–63.
  • Phillips RE, Dudik SJ, Schapire M A maximum entropy approach to species distribution modeling, Proc. 21st Int. Conf. Mach. Learn. 2004;655–662
  • Somodi I, Lepesi N, Botta-Dukát Z. Prevalence dependence in model goodness measures with special emphasis on true skill statistics. Ecol Evol. 2017; 12;7(3):863–872.
  • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29–36.
  • Hijmans R, Cameron SE, Parra JL, et al. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005:1965–1978. DOI:https://doi.org/10.1002/joc.1276.
  • Centro de Vigilância Epidemiológica “Prof. Alexandre Vranjac”. Leishmaniose visceral. Cited 2020 Feb 4 http://www.saude.sp.gov.br/cve-centro-de-vigilancia-epidemiologica-prof.-alexandre-vranjac/areas-de-vigilancia/doencas-de-transmissao-por-vetores-e-zoonoses/agravos/leishmaniose-visceral/
  • Centro de Vigilância Epidemiológica “Prof. Alexandre Vranjac”. Leishmaniose tegumentar americana. Cited 2020 Feb 4. http://www.saude.sp.gov.br/cve-centro-de-vigilancia-epidemiologica-prof.-alexandre-vranjac/areas-de-vigilancia/doencas-de-transmissao-por-vetores-e-zoonoses/agravos/leishmaniose-tegumentar-americana/dados-estatisticos
  • Bhutta ZA, Sommerfeld J, Lassi ZS, et al. Global burden, distribution, and interventions for infectious diseases of poverty. Infect Dis Poverty. 2014 Jul 31;3:21.
  • Nii-Trebi NI. Emerging and neglected infectious diseases: insights, advances, and challenges. Biomed Res Int. 2017;5245021. DOI:https://doi.org/10.1155/2017/5245021
  • Pan American Health Organization, “LEISHMANIOSES Informe Epidemiológico das Américas” PAHO Rep. 2018.
  • Andrade-Filho JD, Scholte RGC, Amaral ALG, et al. Occurrence and Probability Maps of Lutzomyia longipalpis and Lutzomyia cruzi (Diptera: psychodidae: phlebotominae) in Brazil. J Med Entomol. 2017;54(5):1430–1434.
  • Almeida PS, Sciamarelli A, Batista PM, et al. Predicting the geographic distribution of Lutzomyia longipalpis (Diptera: psychodidae) and visceral leishmaniasis in the state of Mato Grosso do Sul, Brazil. Mem Inst Oswaldo Cruz. 2013;108(8):992–996.
  • Prestes-Carneiro LE, Daniel LAF, Almeida LC, et al. Spatiotemporal analysis and environmental risk factors of visceral leishmaniasis in an urban setting in São Paulo State, Brazil. Parasit Vectors. 2019;12(1):251.
  • Margonari C, Freitas CR, Ribeiro RC, et al. Epidemiology of visceral leishmaniasis through spatial analysis, in Belo Horizonte municipality, state of Minas Gerais, Brazil. Mem Inst Oswaldo Cruz. 2006;101(1):31–38.
  • Falcão de Oliveira E, Galati EAB, Oliveira AG, et al. Ecological niche modelling and predicted geographic distribution of Lutzomyia cruzi, vector of Leishmania infantum in South America. PLoS Negl Trop Dis. 2018;12(7):e0006684.
  • Volf P, Myskova J. Sand flies and Leishmania: specific versus permissive vectors. Trends Parasitol. 2007;23(3):91–92.
  • Saraiva L, Carvalho GM, Gontijo CM, et al. Natural infection of Lutzomyia neivai and Lutzomyia sallesi (Diptera: psychodidae) by Leishmania infantum chagasi in Brazil. J Med Entomol. 2009;46(5):1159–1163.
  • Silva RA, Santos FK, Sousa LC, et al. Ecology of Lutzomyia longipalpis and Lutzomyia migonei in an endemic area for visceral leishmaniasis. Rev Bras Parasitol Vet. 2014;23(3):320–327.
  • Salomón OD, Quintana MG, Bezzi G, et al. Lutzomyia migonei as putative vector of visceral leishmaniasis in La Banda, Argentina. Acta Trop. 2010;113(1):84–87.
  • Bezerra JMT, de Araújo VEM, Barbosa DS, et al. Burden of leishmaniasis in Brazil and federated units, 1990-2016: findings from Global Burden of Disease Study 2016. PLoS Negl Trop Dis. 2018;12(9):e0006697.
  • da Costa SM, Cordeiro JLP, Rangel EF. Environmental suitability for Lutzomyia (Nyssomyia) whitmani (Diptera: psychodidae: phlebotominae) and the occurrence of American cutaneous leishmaniasis in Brazil. Parasit Vectors. 2018;11(1):155.
  • Meneguzzi VC, Santos CB, Leite GR, et al. Environmental niche modelling of phlebotomine sand flies and cutaneous leishmaniasis identifies Lutzomyia intermedia as the main vector species in Southeastern Brazil. PLoS One. 2016;11(10):e0164580.
  • Dewan A, Abdullah AYM, Shogib MRI, et al. Exploring spatial and temporal patterns of visceral leishmaniasis in endemic areas of Bangladesh. Trop Med Health. 2017;45:29.
  • Elnaiem DE, Schorscher J, Bendall A, et al. Risk mapping of visceral leishmaniasis: the role of local variation in rainfall and altitude on the presence and incidence of kala-azar in eastern Sudan. Am J Trop Med Hyg. 2003;68(1):10–17.
  • Bhunia GS, Kesari S, Chatterjee N, et al. Spatial and temporal variation and hotspot detection of kala-azar disease in Vaishali district (Bihar), India. BMC Infect Dis. 2013;13:64.
  • Saraiva L, Andrade Filho JD, Falcão AL, et al. Phlebotominae fauna (Diptera: psychodidae) in an urban district of Belo Horizonte, Brazil, endemic for visceral leishmaniasis: characterization of favored locations as determined by spatial analysis. Acta Trop. 2011;117(2):137–145.
  • de Souza CF, Quaresma PF, Andrade Filho JD, et al. Phlebotomine fauna in the urban area of Timóteo, State of Minas Gerais, Brazil. Acta Trop. 2014;134:72–79.
  • Chalghaf B, Chlif S, Mayala B, et al. Ecological niche modeling for the prediction of the geographic distribution of cutaneous leishmaniasis in Tunisia. Am J Trop Med Hyg. 2016;94(4):844–851.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.