574
Views
3
CrossRef citations to date
0
Altmetric
Review

SUMO: a novel target for anti-coronavirus therapy

References

  • Wang C, Horby PW, Hayden FG, et al. A novel coronavirus outbreak of global health concern (vol 395, pg 470, 2020). Lancet. 2020a;395(10223):496.
  • Hui DS, Azhar EI, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–266.
  • Anderson RM, Heesterbeek H, Klinkenberg D, et al. How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 2020;395(10228):931–934.
  • Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720.
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature; 2020.
  • Chen Y, Liu QY, Guo DY. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418–423.
  • Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181–192.
  • Graham RL, Baric RS. Recombination, Reservoirs, and the Modular Spike: mechanisms of Coronavirus Cross-Species Transmission. J Virol. 2010;84(7):3134–3146.
  • Kim JM, Chung YS, Jo HJ, et al. Identification of Coronavirus Isolated from a Patient in Korea with COVID-19. Osong Public Health Res Perspect. 2020;11(1):3–7.
  • Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281–286.
  • Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerg Infect Dis. 2006;12(1):15–22.
  • Kassa SM, Njagarah JBH, Terefe YA. Analysis of the mitigation strategies for COVID-19: from mathematical modelling perspective. Chaos Solitons Fractals. 2020;138:109968.
  • Gates B. Responding to Covid-19 - A Once-in-a-Century Pandemic? N Engl J Med. 2020;382(18):1677–1679.
  • Nathanson N, Mcgann KA, Wilesmith J, et al. The Evolution of Virus Diseases - Their Emergence, Epidemicity, and Control. Virus Res. 1993;29(1):3–20.
  • Lowrey AJ, Cramblet W, Bentz GL. Viral manipulation of the cellular sumoylation machinery. Cell Commun Signal. 2017;15(27).
  • Wilson VG. Viral Interplay with the Host Sumoylation System. In: Sumo Regulation of Cellular Processes. 2nd ed. Vol. 963. 2017. p. 359–388.
  • Fan Z, Zhuo Y, Tan XY, et al. SARS-CoV nucleocapsid protein binds to hUbc9, a ubiquitin conjugating enzyme of the sumoylation system. J Med Virol. 2006;78(11):1365–1373.
  • Li FQ, Xiao H, Tam JP, et al. Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus. FEBS Lett. 2005;579(11):2387–2396.
  • Bock JO, Ortea I. Re-analysis of SARS-CoV-2-infected host cell proteomics time-course data by impact pathway analysis and network analysis: a potential link with inflammatory response. Aging (Albany NY). 2020;12(12):11277–11286.
  • Bojkova D, Klann K, Koch B, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 2020;583(7816):469–472.
  • Flotho A, Melchior F. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem. 2013;82(1):357–385.
  • Muller S, Hoege C, Pyrowolakis G, et al. SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol. 2001;2(3):202–210.
  • Owerbach D, McKay EM, Yeh ETH, et al. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun. 2005;337(2):517–520.
  • Hendriks IA, Vertegaal AC. A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol. 2016;17(9):581–595.
  • Johnson ES. Protein modification by SUMO. Annu Rev Biochem. 2004;73(1):355–382.
  • Hickey CM, Wilson NR, Hochstrasser M. Function and regulation of SUMO proteases. Nat Rev Mol Cell Biol. 2012;13(12):755–766.
  • Guo C, Henley JM. Wrestling with stress: roles of protein SUMOylation and deSUMOylation in cell stress response. Iubmb Life. 2014;66(2):71–77.
  • Enserink JM. Sumo and the cellular stress response. Cell Div. 2015;10(1):4.
  • Bentz GL, Moss CR, Whitehurst CB, et al. LMP1-Induced Sumoylation Influences the Maintenance of Epstein-Barr Virus Latency through KAP1. J Virol. 2015;89(15):7465–7477.
  • Bentz GL, Whitehurst CB, Pagano JS. Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) C-Terminal-Activating Region 3 Contributes to LMP1-Mediated Cellular Migration via Its Interaction with Ubc9. J Virol. 2011;85(19):10144–10153.
  • Bentz GL, Shackelford J, Pagano JS. Epstein-Barr Virus Latent Membrane Protein 1 Regulates the Function of Interferon Regulatory Factor 7 by Inducing Its Sumoylation. J Virol. 2012;86(22):12251–12261.
  • Honda K, Taniguchi T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol. 2006;6(9):644–658.
  • Kubota T, Matsuoka M, Chang TH, et al. Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression. J Biol Chem. 2008;283(37):25660–25670.
  • Domingues P, Golebiowski F, Tatham MH, et al. Global Reprogramming of Host SUMOylation during Influenza Virus Infection. Cell Rep. 2015;13(7):1467–1480.
  • Pal S, Santos A, Rosas JM, et al. Influenza A virus interacts extensively with the cellular SUMOylation system during infection. Virus Res. 2011;158(1–2):12–27.
  • Sinigalia E, Alvisi G, Segre CV, et al. The human cytomegalovirus DNA polymerase processivity factor UL44 is modified by SUMO in a DNA-dependent manner. PLoS One. 2012;7(11):e49630.
  • Alfadhli A, Love Z, Arvidson B, et al. Hantavirus nucleocapsid protein oligomerization. J Virol. 2001;75(4):2019–2023.
  • Maeda A, Lee BH, Yoshimatsu K, et al. The intracellular association of the nucleocapsid protein (NP) of hantaan virus (HTNV) with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9). Virology. 2003;305(2):288–297.
  • Xu K, Klenk C, Liu B, et al. Modification of Nonstructural Protein 1 of Influenza A Virus by SUMO1. J Virol. 2011;85(2):1086–1098.
  • Miller G, El-Guindy A, Countryman J, et al. Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res. 2007;97:81.
  • Wu YC, Roark AA, Bian XL, et al. Modification of papillomavirus E2 proteins by the small ubiquitin-like modifier family members (SUMOs). Virology. 2008;378(2):329–338.
  • Chang LK, Lee YH, Cheng TS, et al. Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem. 2004;279(37):38803–38812.
  • Chang LK, Liu ST, Kuo CW, et al. Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol. 2008;379(2):231–242.
  • Liu ST, Wang WH, Hong YR, et al. Sumoylation of Rta of Epstein-Barr virus is preferentially enhanced by PIASx beta. Virus Res. 2006;13(2):163–170.
  • Boggio R, Colombo R, Hay RT, et al. A mechanism for inhibiting the SUMO pathway. Mol Cell. 2004;16(4):549–561.
  • Boggio R, Passafaro A, Chiocca S. Targeting SUMO E1 to ubiquitin ligases - A viral strategy to counteract sumoylation. J Biol Chem. 2007;282(21):15376–15382.
  • Colombo R, Boggio R, Seiser C, et al. The adenovirus protein Gam1 interferes with sumoylation of histone deacetylase 1. EMBO Rep. 2002;3(11):1062–1068.
  • Glotzer JB, Saltik M, Chiocca S, et al. Activation of heat-shock response by an adenovirus is essential for virus replication. Nature. 2000;407(6801):207–211.
  • Heaton PR, Deyrieux AF, Bian XL, et al. HPV E6 proteins target Ubc9, the SUMO conjugating enzyme. Virus Res. 2011;158(1–2):199–208.
  • Bischof O, Schwamborn K, Martin N, et al. RETRACTED: the E3 SUMO Ligase PIASy Is a Regulator of Cellular Senescence and Apoptosis. Mol Cell. 2006;22(6):783–794.
  • Gomes R, Guerra-Sa R, Arruda E. Coxsackievirus B5 induced apoptosis of HeLa cells: effects on p53 and SUMO. Virology. 2010;396(2):256–263.
  • Boutell C, Sadis S, Everett RD. Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol. 2002;76(2):841–850.
  • Sloan E, Tatham MH, Groslambert M, et al. Analysis of the SUMO2 Proteome during HSV-1 Infection. PLoS Pathog. 2015;11(7):e1005059.
  • Li RW, Wang LY, Liao GL, et al. SUMO Binding by the Epstein-Barr Virus Protein Kinase BGLF4 Is Crucial for BGLF4 Function. J Virol. 2012;86(10):5412–5421.
  • Ng ML, Tan SH, See EE, et al. Early events of SARS coronavirus infection in Vero cells. J Med Virol. 2003;71(3):323–331.
  • Risco C, Anton IM, Enjuanes L, et al. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J Virol. 1996;70(7):4773–4777.
  • He QG, Chong KH, Chng HH, et al. Development of a Western blot assay for detection of antibodies against coronavirus causing severe acute respiratory syndrome. Clin Diagn Lab Immun. 2004a;13(2):417–422.
  • Lin Y, Shen X, Yang RF, et al. Identification of an epitope of SARS-coronavirus nucleocapsid protein. Cell Res. 2003;13(3):141–145. .
  • Chang CK, Sue SC, Yu TH, et al. Modular organization of SARS coronavirus nucleocapsid protein. J Biomed Sci. 2006;13(1):59–72.
  • Huang QL, Yu LP, Petros AM, et al. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry-Us. 2004;43(20):6059–6063.
  • He RT, Dobie F, Ballantine M, et al. Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem Biophys Res Commun. 2004b;316(2):476–483.
  • Luo H, Ye F, Chen K, et al. SR-Rich Motif Plays a Pivotal Role in Recombinant SARS Coronavirus Nucleocapsid Protein Multimerization. Biochemistry-Us. 2005;44(46):15351–15358.
  • Peng TY, Lee KR, Tarn WY. Phosphorylation of the arginine/serine dipeptide-rich motif of the severe acute respiratory syndrome coronavirus nucleocapsid protein modulates its multimerization, translation inhibitory activity and cellular localization. Febs J. 2008;275(16):4152–4163.
  • Surjit M, Kumar R, Mishra RN, et al. The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14-3-3-mediated translocation. J Virol. 2005;79(17):11476–11486.
  • Wu CH, Yeh SH, Tsay YG, et al. Glycogen synthase kinase-3 regulates the phosphorylation of severe acute respiratory syndrome coronavirus nucleocapsid protein and viral replication. J Biol Chem. 2009;284(8):5229–5239.
  • El Motiam A, Vidal S, Seoane R, et al. SUMO and Cytoplasmic RNA Viruses: from Enemies to Best Friends. 2020;1233:263–277. Proteostasis and Disease: From Basic Mechanisms to Clinics.
  • Gill S, Dos Santos CC, O’Gorman DB, et al. (2020). Transcriptional Profiling of Leukocytes in Critically Ill COVID19 Patients: implications for Interferon Response and Coagulation.
  • Van Gent M, Sparrer KMJ, Gack MU. TRIM Proteins and Their Roles in Antiviral Host Defenses. Annu Rev Virol. 2018;5(1):385–405.
  • Maarifi G, Fernandez J, Portilho DM, et al. RanBP2 regulates the anti-retroviral activity of TRIM5 alpha by SUMOylation at a predicted phosphorylated SUMOylation motif. Commun Biol. 2018;1:1.
  • Koralnik IJ, Tyler KL. COVID-19: a Global Threat to the Nervous System. Ann Neurol. 2020;88(1):1–11.
  • Maucourant C, Filipovic I, Ponzetta A, et al. Natural killer cell activation related to clinical outcome of COVID-19. medRxiv; 2020.
  • Singh RR, Sedani S, Lim M, et al. RANBP2 mutation and acute necrotizing encephalopathy: 2 cases and a literature review of the expanding clinico-radiological phenotype. Eur J Paediatr Neuro. 2015;19(2):106–113.
  • Dixon L, Varley J, Gontsarova A, et al. COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurol-Neuroimmunol. 2020;7(5):e789.
  • Elkady A, Rabinstein AA. Acute necrotizing encephalopathy and myocarditis in a young patient with COVID-19. Neurol-Neuroimmunol. 2020;7(5).
  • Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: imaging Features. Radiology. 2020;296(2):E119–E120.
  • Schmidt N, Domingues P, Golebiowski F, et al. An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. Proc Natl Acad Sci U S A. 2019;116(35):17399–17408.
  • Xu XX, Wan H, Nie L, et al. RIG-I: a multifunctional protein beyond a pattern recognition receptor. Protein Cell. 2018;9(3):246–253.
  • Wang Y, Fan Y, Huang Y, et al. TRIM28 regulates SARS-CoV-2 cell entry by targeting ACE2. bioRxiv; 2020b.
  • Li WH, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–454. .
  • Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020;181(5):1016-+. .
  • Yin YD, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130–137.
  • Woo PCY, Huang Y, Lau SKP, et al. Coronavirus Genomics and Bioinformatics Analysis. Viruses-Basel. 2010;2(8):1804–1820.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.