279
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Enhancing efficacy of existing antibacterials against selected multiple drug resistant bacteria using cinnamic acid-coated magnetic iron oxide and mesoporous silica nanoparticles

, , , ORCID Icon, & ORCID Icon

References

  • Brennan-Krohn T, Manetsch R, O’Doherty GA, et al. New strategies and structural considerations in development of therapeutics for carbapenem-resistant Enterobacteriaceae. Transl Res. 2020;220:14–32.
  • Mandal SM, Roy A, Ghosh AK, et al. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front Pharmacol. 2014;5:105.
  • Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol. 2019;4(4):565–577.
  • Odonkor ST, Addo KK. Bacteria resistance to antibiotics: recent trends and challenges. Int J Biol Med Res. 2011;2(4):1204–1210.
  • Ansari MJ, Al-Ghamdi A, Usmani S, et al. In vitro evaluation of the effects of some plant essential oils on Ascosphaera apis, the causative agent of Chalkbrood disease. Saudi J Biol Sci. 2017;24(5):1001–1006.
  • Meo SA, Al-Asiri SA, Mahesar AL, et al. Role of honey in modern medicine. Saudi J Biol Sci. 2017;24(5):975–978.
  • Akova M. Epidemiology of antimicrobial resistance in bloodstream infections. Virulence. 2016;7(3):252–266.
  • Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10(4):369–378.
  • Akbar N, Khan NA, Sagathevan K, et al. Gut bacteria of Cuora amboinensis (turtle) produce broad-spectrum antibacterial molecules. Sci Rep. 2019a;9(1):1–19.
  • Akbar N, Siddiqui R, Sagathevan K, et al. Gut bacteria of water monitor lizard (Varanus salvator) are a potential source of antibacterial compound (s). Antibiotics. 2019b;8(4):164.
  • Khan NA, Siddiqui R, Elsheikha H. Enemy within: strategies to kill’superbugs’ in hospitals. Int J Antimicrob Agents. 2010;36(3):291.
  • Siddiqui R, Khan NA. Infection control strategy by killing drug-resistant bacteria. Pathog Glob Health. 2013;107(5):215.
  • Anwar A, Masri A, Rao K, et al. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci Rep. 2019;9(1):1–12.
  • Bodey GP, Bolivar R, Fainstein V, et al. Infections caused by Pseudomonas aeruginosa. Rev Infect Dis. 1983;5(2):279–313.
  • Recio R, Mancheño M, Viedma E, et al. Predictors of mortality in bloodstream infections caused by Pseudomonas aeruginosa and impact of antimicrobial resistance and bacterial virulence. Antimicrob Agents Chemother. 2020;64(2):e01759–19.
  • Khanna A, Khanna M, Aggarwal A. Serratia marcescens-a rare opportunistic nosocomial pathogen and measures to limit its spread in hospitalized patients. J Clin Diagn Res. 2013;7(2):243.
  • Vading M, Nauclér P, Kalin M, et al. Invasive infection caused by Klebsiella pneumoniae is a disease affecting patients with high comorbidity and associated with high long-term mortality. PloS One. 2018;13(4):e0195258.
  • Silva-Costa C, Brito MJ, Pinho MD, et al., Portuguese Group for the Study of Streptococcal Infections.Pediatric complicated pneumonia caused by Streptococcus pneumoniae serotype 3 in 13-valent pneumococcal conjugate vaccines, Portugal, 2010–2015. Emerg Infect Dis. 2018;24(7):1307.
  • Brogden RN, Campoli-Richards DM. Cefixime. Drugs. 1989;38(4):524–550.
  • Ali S, Perveen S, Shah MR, et al. Bactericidal potentials of silver and gold nanoparticles stabilized with cefixime: a strategy against antibiotic-resistant bacteria. J Nanopart Res. 2020;22(7):1–12.
  • Rostamizadeh S, Daneshfar Z, Moghimi H. Synthesis of sulfamethoxazole and sulfabenzamide metal complexes; evaluation of their antibacterial activity. Eur J Med Chem. 2019;171:364–371.
  • Sahyon HA, Ramadan EN, Mashaly MM. Synergistic effect of quercetin in combination with sulfamethoxazole as new antibacterial agent: in vitro and in vivo study. Pharm Chem J. 2019;53(9):803–813.
  • Seku K, Yamala AK, Kancherla M, et al. Synthesis of moxifloxacin–Au (III) and Ag (I) metal complexes and their biological activities. J Anal Sci Technol. 2018;9(1):1–13.
  • Masri A, Anwar A, Khan NA, et al. The use of nanomedicine for targeted therapy against bacterial infections. Antibiotics. 2019;8(4):260.
  • Shah A, Yameen MA, Fatima N, et al. Chemical synthesis of chitosan/silver nanocomposites films loaded with moxifloxacin: their characterization and potential antibacterial activity. Int J Pharm. 2019a;561:19–34.
  • Shah A, Buabeid MA, Arafa ESA, et al. The wound healing and antibacterial potential of triple-component nanocomposite (chitosan-silver-sericin) films loaded with moxifloxacin. Int J Pharm. 2019b;564:22–38.
  • Ali R, Batool T, Manzoor B, et al. Nanobiotechnology-based drug delivery strategy as a potential weapon against multiple drug-resistant pathogens. In: Antibiotics and antimicrobial resistance genes in the environment. Elsevier; 2020. p. 350–368.
  • Kapadia C, Alhazmi A, Patel N, et al. Nanoparticles combined with cefixime as an effective synergistic strategy against Salmonella enterica typhi. Saudi J Biol Sci. 2021;28(8):4164–4172.
  • Zakeri Z, Allafchian A, Vahabi MR, et al. Synthesis and characterization of antibacterial silver nanoparticles using essential oils of crown imperial leaves, bulbs and petals. Micro Nano Lett. 2021;16(11):533–539.
  • Allafchian A, Mousavi SH, Jalali SAH. Synthesis of antibacterial flower‐like silver nanostructures by self‐assembly of diphenylalanine peptide on graphite. Micro Nano Lett. 2020;15(7):486–489.
  • Askari Z, Vahabi MR, Allafchian A, et al. Biosynthesis of antibacterial silver nanoparticles using Astragalus verus Olivier. Micro Nano Lett. 2020;15(2):66–71.
  • Kawish M, Jabri T, Elhissi A, et al. Galactosylated iron oxide nanoparticles for enhancing oral bioavailability of ceftriaxone. Pharm Dev Technol. 2021;26(3):291–301.
  • Vazquez NI, Gonzalez Z, Ferrari B, et al. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Boletín de la Sociedad Española de Cerámica y Vidrio. 2017;56(3):139–145
  • Chaubey P, Patel RR, Mishra B. Development and optimization of curcumin-loaded mannosylated chitosan nanoparticles using response surface methodology in the treatment of visceral leishmaniasis. Expert Opin Drug Deliv. 2014;11(8):1163–1181.
  • Date AA, Nagarsenker MS, Patere S, et al. Lecithin-based novel cationic nanocarriers (Leciplex) II: improving therapeutic efficacy of quercetin on oral administration. Mol Pharm. 2011;8(3):716–726.
  • Katara R, Sachdeva S, Majumdar DK. Design, characterization, and evaluation of aceclofenac-loaded Eudragit RS 100 nanoparticulate system for ocular delivery. Pharm Dev Technol. 2019;24(3):368–379.
  • Abdelnasir S, Anwar A, Kawish M, et al. Metronidazole conjugated magnetic nanoparticles loaded with amphotericin B exhibited potent effects against pathogenic Acanthamoeba castellanii belonging to the T4 genotype. AMB Express. 2020;10(1):1–11.
  • Akbar N, Siddiqui R, Iqbal M, et al. Gut bacteria of cockroaches are a potential source of antibacterial compound (s). Lett Appl Microbiol. 2018;66(5):416–426.
  • Akbar N, Siddiqui R, Iqbal M, et al. Gut bacteria of Rattus rattus (Rat) produce broad-spectrum antibacterial lipopeptides. ACS Omega. 2021;6(18):12261–12273.
  • Akbar N, Siddiqui R, Iqbal M, et al. Antibacterial activities of selected pure compounds isolated from gut bacteria of animals living in polluted environments. Antibiotics. 2020;9(4):190.
  • Parvekar P, Palaskar J, Metgud S, et al. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Invest Dent. 2020;7(1):105–109
  • Kawish M, Elhissi A, Jabri T, et al. Enhancement in oral absorption of ceftriaxone by highly functionalized magnetic iron oxide nanoparticles. Pharmaceutics. 2020;12(6):492.
  • Costa VM, de Souza MCM, Fechine PBA, et al. Nanobiocatalytic systems based on lipase-Fe3O4 and conventional systems for isoniazid synthesis: a comparative study. Braz J Chem Eng. 2016;33(3):661–673.
  • Hachani R, Lowdell M, Birchall M, et al. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale. 2016;8(6):3278–3287.
  • Tripathi IP, Gupta P, Gupta M, et al. Characterization and validation of cefixime trihydrate tablets with ftir and Rp-Hplc Techeniques. Indian J Appl Res. 2015;5(4):691.
  • Oliveira LFD, Bouchmella K, Picco AS, et al. Tailored silica nanoparticles surface to increase drug load and enhance bactericidal response. J Braz Chem Soc. 2017;28:1715–1724.
  • Mehrabi F, Shamspur T, Mostafavi A, et al. Inclusion of sulfamethoxazole in a novel CuFe2O4 nanoparticles/mesoporous silica‐based nanocomposite: release kinetics and antibacterial activity. Appl Organomet Chem. 2021;35(1):e6035.
  • Iqbal O, Shah S, Abbas G, et al. Moxifloxacin loaded nanoparticles of disulfide bridged thiolated chitosan-eudragit RS100 for controlled drug delivery. Int J Biol Macromol. 2021;182:2087–2096.
  • Gutiérrez L, De La Cueva L, Moros M, et al. Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology. 2019;30(11):112001.
  • Stewart M, Bartholomew B, Currie F, et al. Pyranoisoflavones from Rinorea welwitschii. Fitoterapia. 2000;71(5):595–597.
  • Kong ZL, Kuo HP, Johnson A, et al. Curcumin-loaded mesoporous silica nanoparticles markedly enhanced cytotoxicity in hepatocellular carcinoma cells. Int J Mol Sci. 2019;20(12):2918.
  • Imran M, Shah MR, Ullah F, et al. Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Cefixime. Int J Pharm. 2016;505(1–2):122–132.
  • Han C, Huang H, Dong Y, et al. A comparative study of the use of mesoporous carbon and mesoporous silica as drug carriers for oral delivery of the water-insoluble drug carvedilol. Molecules. 2019;24(9):1770.
  • Juère E, Florek J, Bouchoucha M, et al. In vitro dissolution, cellular membrane permeability, and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles. Mol Pharm. 2017;14(12):4431–4441.
  • Kaasalainen M, Aseyev V, Von Haartman E, et al. Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res Lett. 2017;12(1):1–10.
  • Kanwal T, Saifullah S, Ur Rehman J, et al. Design of absorption enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for curcumin improved anti-cancer activity and oral bioavailability. J Mol Liq. 2021;324:114774.
  • Mohammed MA, Syeda J, Wasan KM, et al. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53.
  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277.
  • Gould IM, Bal AM. New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence. 2013;4(2):185–191.
  • Sengupta S, Chattopadhyay MK, Grossart HP. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 2013;4:47.
  • Wright GD. Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol. 2014;60(3):147–154.
  • Rana S, Nazar U, Ali J, et al. Improved antifouling potential of polyether sulfone polymeric membrane containing silver nanoparticles: self-cleaning membranes. Environ Technol. 2018;39(11):1413–1421.
  • Ali J, Ali N, Jamil SUU, et al. Insight into eco-friendly fabrication of silver nanoparticles by Pseudomonas aeruginosa and its potential impacts. J Environ Chem Eng. 2017;5(4):3266–3272.
  • Anwar A, Siddiqui R, Shah MR, et al. Gold nanoparticle-conjugated cinnamic acid exhibits antiacanthamoebic and antibacterial properties. Antimicrob Agents Chemother. 2018;62(9):e00630–18.
  • Rini IJ, Islam MA, Ahsan S. Effect of selected antibiotics on biofilm formed by Salmonella enterica serovars Typhi and Paratyphi. Bangladesh J Microbiol. 2020;37(2):62–65
  • Lalitha P, Srinivasan M, Manikandan P, et al. Relationship of in vitro susceptibility to moxifloxacin and in vivo clinical outcome in bacterial keratitis. Clinl Infect Dis. 2012;54(10):1381–1387.
  • Balfour JAB, Lamb HM. Moxifloxacin. Drugs. 2000;59(1):115–139.
  • Klugman KP, Capper T. Concentration-dependent killing of antibiotic-resistant pneumococci by the methoxyquinolone moxifloxacin. J Antimicrob Chemother. 1997;40(6):797–802.
  • Jankowski S, Franiczek R. Susceptibility of Escherichia coli with capsular antigen K1 isolated from urinary tract infection on the joint action of cefotaxime and normal human serum. Nephron. 1994;68(4):519–520.
  • Arakha M, Pal S, Samantarrai D, et al. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci Rep. 2015;5(1):1–12.
  • Michailidis M, Sorzabal-Bellido I, Adamidou EA, et al. Modified mesoporous silica nanoparticles with a dual synergetic antibacterial effect. ACS Appl Mater Interfaces. 2017;9(44):38364–38372.
  • Colon G, Ward BC, Webster. TJ. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A. 2006;78A(3):595–604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.