141
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A historical perspective on arboviruses of public health interest in Southern Africa

ORCID Icon, ORCID Icon, , & ORCID Icon

References

  • World Health Organization. Tanzania Confirms First-Ever Outbreak Of Marburg Virus Disease; 2023. https://www.afro.who.int/countries/united-republic-of-tanzania/news/tanzania-confirms-first-ever-outbreak-marburg-virus-disease
  • Huang Y-JS, Higgs S, Vanlandingham DL. Arbovirus-mosquito vector-host interactions and the impact on transmission and disease pathogenesis of arboviruses. Front Microbiol. 2019;10:22. doi: 10.3389/fmicb.2019.00022
  • Kuno G, Chang G-J-J. Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clinical Microbiology Reviews. 2005;18(4):608–637. doi: 10.1128/CMR.18.4.608-637.2005
  • Weaver SC, Barrett ADT. Transmission cycles, host range, evolution and emergence of arboviral disease. Nature Rev Microbiol. 2004;2(10):789–801. doi: 10.1038/nrmicro1006
  • Braack L, Gouveia de Almeida AP, Cornel AJ, et al. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites Vectors. 2018;11(1):29.
  • Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res. 2010;85(2):328–345. doi: 10.1016/j.antiviral.2009.10.008
  • Couper LI, Farner JE, Caldwell JM, et al. How will mosquitoes adapt to climate warming? Elife. 2021;10:e69630. doi: 10.7554/eLife.69630
  • Girard M, Nelson CB, Picot V, et al. Arboviruses: a global public health threat. Vaccine. 2020;38(24):3989–3994.
  • Wilder-Smith A, Gubler DJ, Weaver SC, et al. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect Dis. 2017;17(3):e101–e106.
  • World Healths Organization. Launch Of The Global Arbovirus Initiative; 2022c. https://www.who.int/news-room/events/detail/2022/03/31/default-calendar/global-arbovirus-initiative
  • Weaver SC. Evolutionary influences in arboviral disease. Curr Top Microbiol Immunol. 2006;299:285–314.
  • Drake JW. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA. 1993;90(9):4171–4175.
  • Picarazzi F, Vicenti I, Saladini F, et al. Targeting the RdRp of emerging RNA viruses: the structure-based drug design challenge. Molecul (Basel, Switzerland). 2020;25(23):5695.
  • Coffey LL, Forrester N, Tsetsarkin K, et al. Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiol. 2013;8(2):155–176. doi: 10.2217/fmb.12.139
  • Li H, Roossinck MJ. Genetic bottlenecks reduce population variation in an experimental RNA virus population. J Virol. 2004;78(19):10582–10587. doi: 10.1128/JVI.78.19.10582-10587.2004
  • Migné CV, Moutailler S, Attoui H. Strategies for assessing arbovirus genetic variability in vectors and/or mammals. Pathogens. 2020;9(11):915.
  • Go YY, Balasuriya UBR, Lee C. Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin Exp Vaccine Res. 2014;3(1):58. doi: 10.7774/cevr.2014.3.1.58
  • Weaver SC. Prediction and prevention of urban arbovirus epidemics: a challenge for the global virology community. Antiviral Res. 2018;156:80–84. doi: 10.1016/j.antiviral.2018.06.009
  • Araf Y, Ullah M, Faruqui A, et al. Dengue outbreak is a global recurrent crisis: review of the literature. Electron J Gen Med. 2020;18(1):em267.
  • Higgs S, Vanlandingham D. Chikungunya virus and its mosquito vectors. Vector-Borne Zoonotic Dis. 2015;15(4):231–240. doi: 10.1089/vbz.2014.1745
  • Higgs S, Vanlandingham DL, Powers AM. Chikungunya and Zika viruses: global emerging health threats. In: Stephen , Dana LV, An. 1st editors. London (UK): Academic Press; 2018.
  • Hoch AL, Gargan TP, Bailey CL. Mechanical transmission of rift valley fever virus by hematophagous diptera. Am J Trop Med Hyg. 1985;34(1):188–193. doi: 10.4269/ajtmh.1985.34.188
  • Mordecai EA, Ryan SJ, Caldwell JM, et al. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet Health. 2020;4(9):e416–e423.
  • Fredericks AC, Fernandez-Sesma A. The burden of dengue and chikungunya worldwide: implications for the southern United States and California. Ann Glob Health. 2014;80(6):466–475. doi: 10.1016/j.aogh.2015.02.006
  • Näslund J, Ahlm C, Islam K, et al. Emerging mosquito-borne viruses linked to Aedes aegypti and Aedes albopictus: global status and preventive strategies. Vector Borne Zoonotic Dis. 2021;21(10):731–746
  • Shepard DS, Undurraga EA, Halasa YA, et al. The global economic burden of dengue: a systematic analysis. Lancet Infect Dis. 2016;16(8):935–941.
  • Braack L, Wulandhari SA, Chanda E, et al. Developing African arbovirus networks and capacity strengthening in arbovirus surveillance and response: findings from a virtual workshop. Parasites Vectors. 2023;16(1):129.
  • And the PANDORA-ID-NET consortium, Elton L, Haider N, et al. Zoonotic disease preparedness in sub-Saharan African countries. One Health Outlook. 2021;3(1):5.
  • Power GM, Vaughan AM, Qiao L, et al. Socioeconomic risk markers of arthropod-borne virus (arbovirus) infections: a systematic literature review and meta-analysis. BMJ Global Health. 2022;7(4):e007735.
  • Hilleman MR. Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections. Proc Nat Acad Sci. 2004;101(suppl_2):14560–14566.
  • Schneider BS, Higgs S. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans R Soc Trop Med. 2008;102(5):400–408. doi: 10.1016/j.trstmh.2008.01.024
  • Fine PEM. Vectors and vertical transmission: an epidemiologic perspective. Ann N Y Acad Sci. 1975;266(1):173–194. doi: 10.1111/j.1749-6632.1975.tb35099.x
  • Lequime S, Paul RE, Lambrechts L, et al. Determinants of arbovirus vertical transmission in mosquitoes. PLOS Pathogens. 2016;12(5):e1005548.
  • Ebert D. The epidemiology and evolution of symbionts with mixed-mode transmission. Annu Rev Ecol Evol Syst. 2013;44(1):623–643. doi: 10.1146/annurev-ecolsys-032513-100555
  • Diaz LA, Flores FS, Quaglia A, et al. Intertwined arbovirus transmission activity: reassessing the transmission cycle paradigm. Front Physiol. 2013;3:3. doi: 10.3389/fphys.2012.00493
  • Buenemann D, Sall AA, Diagne CT, et al. Patterns of a sylvatic yellow fever virus amplification in southeastern Senegal, 2010. Am J Trop Med Hyg. 2014;90(6):1003–1013. doi: 10.4269/ajtmh.13-0404
  • Schneider CA, Calvo E, Peterson KE. Arboviruses: how saliva impacts the journey from vector to host. Int J Mol Sci. 2021;22(17):9173. doi: 10.3390/ijms22179173
  • Viglietta M, Bellone R, Blisnick AA, et al. Vector specificity of arbovirus transmission. Front Microbiol. 2021;12:773211. doi: 10.3389/fmicb.2021.773211
  • Figueiredo LTM. Human urban arboviruses can Infect wild animals and jump to sylvatic maintenance cycles in South America. Front Cell Infect Microbiol. 2019;9:259. doi: 10.3389/fcimb.2019.00259
  • Martina BE, Barzon L, Pijlman GP, et al. Human to human transmission of arthropod-borne pathogens. Curr Opin Virol. 2017;22:13–21. doi: 10.1016/j.coviro.2016.11.005
  • Desai AN, Majumder MS. What is herd immunity? JAMA. 2020;324(20):2113. doi: 10.1001/jama.2020.20895
  • Metcalf CJE, Ferrari M, Graham AL, et al. Understanding herd immunity. Trends Immunol. 2015;36(12):753–755. doi: 10.1016/j.it.2015.10.004
  • Ribeiro GS, Hamer GL, Diallo M, et al. Influence of herd immunity in the cyclical nature of arboviruses. Curr Opin Virol. 2020;40:1–10. doi: 10.1016/j.coviro.2020.02.004
  • Nuttall PA, Labuda M. Dynamics of infection in tick vectors and at the tick–host interface. Adv Virus Res. 2003;60:233–272. Elsevier.
  • Takken W, Verhulst NO. Host preferences of blood-feeding mosquitoes. Annu Rev Entomol. 2013;58(1):433–453. doi: 10.1146/annurev-ento-120811-153618
  • Chathuranga WGD, Karunaratne SHPP, Fernando BR, et al. Diversity, distribution, abundance, and feeding pattern of tropical ornithophilic mosquitoes. J Vector Ecol. 2018;43(1):158–167. doi:10.1111/jvec.12295
  • Farajollahi A, Fonseca DM, Kramer LD, et al. “Bird biting” mosquitoes and human disease: a review of the role of culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol. 2011;11(7):1577–1585.
  • Hamer GL, Kitron UD, Brawn JD, et al. Culex pipiens (Diptera: Culicidae): A bridge vector of west Nile virus to humans. J Med Entomol. 2008;45(1):125–128. doi: 10.1093/jmedent/45.1.125
  • Lounibos LP, Kramer LD. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J Infect Dis. 2016;214(suppl 5):S453–S458. doi: 10.1093/infdis/jiw285
  • Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti—a review. Memórias Inst Oswaldo Cruz. 2013;108(suppl 1):11–17. doi: 10.1590/0074-0276130395
  • Jansen van Vuren P, Weyer J, Kemp A, et al. Is South Africa at risk for Zika virus disease? S Afr Med J. 2016;106(3):232–233.
  • Valentine MJ, Murdock CC, Kelly PJ. Sylvatic cycles of arboviruses in non-human primates. Parasites Vectors. 2019;12(1):463. doi: 10.1186/s13071-019-3732-0
  • Jasinska AJ, Schmitt CA, Service SK, et al. Systems biology of the vervet monkey. ILAR J. 2013;54(2):122–143. doi: 10.1093/ilar/ilt049
  • Thatcher HR, Downs CT, Koyama NF. Understanding foraging flexibility in urban vervet monkeys, chlorocebus pygerythrus, for the benefit of human-wildlife coexistence. Urban Ecosyst. 2020;23(6):1349–1357. doi: 10.1007/s11252-020-01014-1
  • Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1(1):a006841–a006841. doi: 10.1101/cshperspect.a006841
  • Luby JP, Sanders CV. Green monkey disease (“Marburg virus” disease): A new zoonosis. Ann internal med. 1969;71(3):657–660. doi: 10.7326/0003-4819-71-3-657
  • McIntosh BM. Antibody against chikungunya virus in wild primates in Southern Africa. South African J Med Sci. 1970;35(3):65–74.
  • Mcintosh BM, Paterson HE, Mcgillivray G, et al. Further studies on the chikungunya outbreak in Southern Rhodesia in 1962. I. Mosquitoes, wild primates and birds in relation to the epidemic. Ann Trop Med Parasitol. 1964;58(1):45–51.
  • Contreras A, Gómez-Martín A, Paterna A, et al. Papel epidemiológico de las aves en la transmisión y mantenimiento de zoonosis. Rev Sci Tech OIE. 2016;35(3):845–862. doi: 10.20506/rst.35.3.2574
  • Tolsá MJ, García-Peña GE, Rico-Chávez O, et al. Macroecology of birds potentially susceptible to West Nile virus. Proc R Soc B. 2018;285(1893):20182178.
  • Gould E, Pettersson J, Higgs S, et al. Emerging arboviruses: why today? One Health. 2017;4:1–13. doi: 10.1016/j.onehlt.2017.06.001
  • Mbanzulu KM, Wumba R, Mukendi J-PK, et al. Mosquito-borne viruses circulating in Kinshasa, democratic republic of the congo. Inter J Infect Dis. 2017;57:32–37. doi: 10.1016/j.ijid.2017.01.016
  • Marchi S, Trombetta CM, Montomoli E. Emerging and re-emerging arboviral diseases as a global health problem. In: Majumder AA, Kabir R Rahman S, editors. Public Health—emerging and re-emerging issues. InTech; 2018.
  • Nyaruaba R, Mwaliko C, Mwau M, et al. Arboviruses in the East African community partner states: a review of medically important mosquito-borne arboviruses. Pathog Glob Health. 2019;113(5):209–228. doi: 10.1080/20477724.2019.1678939
  • Agboli E, Zahouli JBZ, Badolo A, et al. Mosquito-associated viruses and their related mosquitoes in West Africa. Viruses. 2021;13(5):891. doi: 10.3390/v13050891
  • Southern African Development Community. Member States. 2022. https://www.sadc.int/member-states
  • World Health Organization. Surveillance and control of arboviral diseases in the WHO African region: assessment of country capacities. World Health Organization; 2022b. https://fctc.who.int/publications/i/item/9789240052918
  • International Committee on Taxonomy of Viruses: ICTV. [dataset]; 2022. https://ictv.global
  • Kampango A, Abílio AP. The Asian tiger hunts in Maputo city—the first confirmed report of Aedes (stegomyia) albopictus (skuse, 1895) in mozambique. Parasites Vectors. 2016;9(1):76. doi: 10.1186/s13071-016-1361-4
  • Smithburn KC, Haddow AJ, Mahaffy AF. A neurotropic virus isolated from Aedes mosquitoes caught in the semliki forest. Am J Trop Med Hyg. 1946;s1-26(2):189–208.
  • Kokernot RH, Heymann CS, Muspratt J, et al. Studies on arthropod-borne viruses of tongaland. V. Isolation of bunyamwera and rift valley fever viruses from mosquitoes. South African J Med Sci. 1957;22(2–3):71–80.
  • Kokernot RH, Smithburn KC, De Meillon B, et al. Isolation of Bunyamwera virus from a naturally infected human being and further isolations from Aedes (banksinella) circumluteolus theo. 1. Am J Trop Med Hyg. 1958;7(6):579–584. doi: 10.4269/ajtmh.1958.7.579
  • Dutuze MF, Nzayirambaho M, Mores CN, et al. A review of bunyamwera, batai, and ngari viruses: understudied orthobunyaviruses with potential one health implications. Front Vet Sci. 2018;5:69.
  • Kokernot RH, Szlamp EL, Levitt J, et al. Survey for antibodies against arthropod-borne viruses in the sera of indigenous residents of the caprivi strip and bechuanaland protectorate. Trans R Soc Trop Med. 1965;59(5):553–562.
  • Causey OR, Kemp GE, Causey CE, et al. Isolations of simbu-group viruses in Ibadan, Nigeria 1964–69, including the new types sango, shamonda, sabo and shuni. Ann Trop Med Parasitol. 1972;66(3):357–362.
  • Lee VH. Isolation of viruses from field populations of Culicoides (Diptera: Ceratopogonidae) in Nigeria. J Med Entomol. 1979;16(1):76–79. doi: 10.1093/jmedent/16.1.76
  • Moore DL, Causey OR, Carey DE, et al. Arthropod-borne viral infections of man in Nigeria, 1964–1970. Ann Trop Med Parasitol. 1975;69(1):49–64.
  • Guarido MM, Motlou T, Riddin MA, et al. Potential mosquito vectors for shuni virus, South Africa, 2014–2018. Emerg Infect Dis. 2021;27(12):3142–3146. doi: 10.3201/eid2712.203426
  • van Eeden C, Williams JH, Gerdes TGH, et al. Shuni virus as cause of neurologic disease in horses. Emerg Infect Dis. 2012;18(2):318–321. doi: 10.3201/eid1802.111403
  • Snyman J, Venter GJ, Venter M. An investigation of Culicoides (Diptera: Ceratopogonidae) as potential vectors of medically and veterinary important arboviruses in South Africa. Viruses. 2021;13(10):1978.
  • Motlou TP, Williams J, Venter M. Epidemiology of shuni virus in horses in South Africa. Viruses. 2021;13(5):937. doi: 10.3390/v13050937
  • van Eeden C, Swanepoel R, Venter M. Antibodies against West Nile and shuni viruses in veterinarians, South Africa. Emerg Infect Dis. 2014;20(8):1409–1411. doi: 10.3201/eid2008.131724
  • Steyn J, Motlou P, van Eeden C, et al. Shuni virus in wildlife and nonequine domestic animals, South Africa. Emerg Infect Dis. 2020;26(7):1521–1525. doi: 10.3201/eid2607.190770
  • Motlou TP, Venter M. Shuni virus in cases of neurologic disease in humans, South Africa. Emerg Infect Dis. 2021;27(2):565–569. doi: 10.3201/eid2702.191551
  • Smithburn KC, Kokernot RH, Heymann CS, et al. Neutralizing antibodies for certain viruses in the sera of human beings residing in northern natal. S Afr Med J. 1959;33(27):555–561.
  • Smithburn KC, Paterson HE, Heymann CS, et al. An agent related to Uganda S virus from man and mosquitoes in South Africa. S Afr Med J. 1959;33:959–962.
  • Jupp PG, McIntosh BM, Anderson D. Culex (eumelanomyia) rubinotus Theobald as vector of banzi, Germiston and Witwatersrand viruses. IV. Observations on the biology of C. rubinotus. J Med Entomol. 1976;12(6):647–651. doi: 10.1093/jmedent/12.6.647
  • McIntosh BM, Dickinson DB, Meenehan GM, et al. Culex (eumelanomyia) rubinotus Theobald as vector of banzi, Germiston and Witwatersrand viruses. II. Infections in sentinel hamsters and wild rodents. J Med Entomol. 1976;12(6):641–644. doi: 10.1093/jmedent/12.6.641
  • McIntosh BM, Jupp PG. Infections in sentinel pigeons by Sindbis and West Nile viruses in South Africa, with observations on culex (culex) univittatus (Diptera: Culicidae) attracted to these birds. J Med Entomol. 1979;16(3):234–239. doi: 10.1093/jmedent/16.3.234
  • McIntosh BM, Jupp PG, Dos Santos IS, et al. Culex (eumelanomyia) rubinotus Theobald as vector of banzi, Germiston and Witwatersrand viruses. I. Isolation of virus from wild populations of C. rubinotus. J Med Entomol. 1976b;12(6):637–640. doi: 10.1093/jmedent/12.6.637
  • Donaldson JM. An assessment of culex pipiens quinquefasciatus say as a vector of virus diseases in the Witwatersrand region of the Transvaal. 3. Witwatersrand, Germiston and H336 viruses. South African J Med Sci. 1966;31(1):16–20.
  • Kokernot RH, Casaca VMR, Weinbren MP, et al. Survey for antibodies against arthropod-borne viruses in the sera of indigenous residents of angola. Trans R Soc Trop Med. 1965;59(5):563–570.
  • Barnard BJ, Voges SF. Flaviviruses in South Africa: pathogenicity for sheep. Onderstepoort J Vet Res. 1986;53(4):235–238.
  • McIntosh BM. Mosquito-borne virus diseases of man in southern Africa. S Afr Med J. 1986;Suppl:69–72.
  • MacIntyre C, Guarido MM, Riddin MA, et al. Survey of West Nile and banzi viruses in mosquitoes, South Africa, 2011–2018. Emerg Infect Dis. 2023;29(1):164–169. doi: 10.3201/eid2901.220036
  • Holmes EC, Twiddy SS. The origin, emergence and evolutionary genetics of dengue virus. Infect Genet Evol. 2003;3(1):19–28. doi: 10.1016/S1567-1348(03)00004-2
  • Ashburn PM, Craig CF. Experimental investigations regarding the etiology of dengue fever. J Infect Dis. 1907;4(3):440–475. doi: 10.1093/infdis/4.3.440
  • Hotta S. Experimental studies on dengue. I. Isolation, identification and modification of the virus. J Infect Dis. 1952;90(1):1–9. doi: 10.1093/infdis/90.1.1
  • Christie J. On epidemics of dengue fever: their diffusion and etiology. Glasgow Med J. 1881;16(3):161–176.
  • Edington AD. “Dengue”, as seen in the recent epidemic in durban. J Med Associat South Africa. 1927;1:446–448.
  • Kokernot RH, Smithburn KC, Weinbren MP. Neutralizing antibodies to arthropod-borne viruses in human beings and animals in the Union of South Africa. J Obstet Gynaecol. 1956;77(5):313–323.
  • Filipe AR, De Carvalho RG, Relvas A, et al. Arbovirus studies in Angola: Serological survey for antibodies to arboviruses. Am J Trop Med Hyg. 1975;24(3):516–520. doi: 10.4269/ajtmh.1975.24.516
  • Gubler DJ, Sather GE, Kuno G, et al. Dengue 3 virus transmission in Africa. Am J Trop Med Hyg. 1986;35(6):1280–1284. doi: 10.4269/ajtmh.1986.35.1280
  • Gudo ES, Lesko B, Vene S, et al. Seroepidemiologic screening for zoonotic viral infections, Maputo, mozambique. Emerg Infect Dis. 2016;22(5):915–917. doi: 10.3201/eid2205.151002
  • Massangaie M, Pinto G, Padama F, et al. Clinical and epidemiological characterization of the first recognized outbreak of dengue virus-type 2 in Mozambique, 2014. Am J Trop Med Hyg. 2016;94(2):413–416. doi: 10.4269/ajtmh.15-0543
  • Muianga A, Pinto G, Ali S, et al. Occurrence of dengue in 2013 and 2014 in northern Mozambique: is dengue an endemic disease in Mozambique? Inter J Infect Dis. 2016;45:174. doi: 10.1016/j.ijid.2016.02.411
  • Gudo J, Muianga B, Mahumane Gundane I, et al. Dengue virus serotype 2 established in northern Mozambique (2015–2016). Am J Trop Med Hyg. 2017;97(5):1418–1422. doi: 10.4269/ajtmh.17-0317
  • Abreu C, Silva-Pinto A, Lazzara D, et al. Imported dengue from 2013 Angola outbreak: not just serotype 1 was detected. J Clin Virol. 2016;79:77–79. doi: 10.1016/j.jcv.2016.04.011
  • Amarasinghe A. Dengue virus infection in Africa. Emerg Infect Dis. 2011;17(8):1349–1354. doi: 10.3201/eid1708.101515
  • Noden BH, van der Colf BE. Neglected tropical diseases of Namibia: unsolved mysteries. Acta tropica. 2013;125(1):1–17. doi: 10.1016/j.actatropica.2012.09.007
  • Noden BH, Musuuo M, Aku-Akai L, et al. Risk assessment of flavivirus transmission in namibia. Acta tropica. 2014;137:123–129. doi: 10.1016/j.actatropica.2014.05.010
  • Jupp PG, Kemp A. The potential for dengue in South Africa: vector competence tests with dengue 1 and 2 viruses and 6 mosquito species. Trans R Soc Trop Med. 1993;87(6):639–643. doi: 10.1016/0035-9203(93)90271-Q
  • Higa Y, Abílio AP, Futami K, et al. Abundant Aedes (stegomyia) aegypti aegypti mosquitoes in the 2014 dengue outbreak area of mozambique. Trop Med Int Health. 2015;43(2):107–109.
  • Kokernot RH, Smithburn KC, Muspratt J, et al. Studies on arthropod-borne viruses of Tongaland. VIII. Spondweni virus, an agent previously unknown, isolated from taeniorhynchus (mansonioides) uniformis. South African J Med Sci. 1957;22(2–3):103–112.
  • Mcintosh BM, Kokernot RH, Paterson HE, et al. Isolation of Spondweni virus from four species of culicine mosquitoes and a report of two laboratory infections with the virus. S Afr Med J. 1961 Aug 5;35:647–50.
  • Jaeger AS, Weiler AM, Moriarty RV, et al. Spondweni virus causes fetal harm in Ifnar1-/- mice and is transmitted by Aedes aegypti mosquitoes. Virol. 2020;547:35–46. doi: 10.1016/j.virol.2020.05.005
  • Haddow AD, Woodall JP. Distinguishing between zika and spondweni viruses. Bullet World Health Organ. 2016;94(10):711–711A. doi: 10.2471/BLT.16.181503
  • Kokernot RH, Smithburn KC, Kluge E. Neutralizing antibodies against arthropod-borne viruses in the sera of domestic quadrupeds ranging in Tongland, Union of South Africa. Ann Trop Med Parasitol. 1961;55(1):73–85. doi: 10.1080/00034983.1961.11686021
  • McIntosh BM, Jupp PG, De Sousa J. Further Isolations of arboviruses from mosquitoes collected in Tongaland, South Africa, 1960–19681. J Med Entomol. 1972;9(2):155–159. doi: 10.1093/jmedent/9.2.155
  • McIntosh BM. Usutu (SAAr 1776), nouvel arbovirus du groupe B. Int Cat Arboviruses. 1985;3:1059–1060.
  • Nikolay B, Diallo M, Boye CSB, et al. Usutu virus in Africa. Vector Borne Zoonotic Dis. 2011;11(11):1417–1423. doi: 10.1089/vbz.2011.0631
  • Ndione MHD, Ndiaye EH, Thiam MS, et al. Impact of genetic diversity on biological characteristics of usutu virus strains in Africa. Virus res. 2019;273:197753. doi: 10.1016/j.virusres.2019.197753
  • Engel D, Jöst H, Wink M, et al. Reconstruction of the evolutionary history and dispersal of usutu virus, a neglected emerging arbovirus in Europe and Africa. MBio. 2016;7(1):e01938–15. doi: 10.1128/mBio.01938-15
  • Benzarti E, Garigliany M. In vitro and in vivo models to study the zoonotic mosquito-borne Usutu virus. Viruses. 2020;12(10):1116. doi: 10.3390/v12101116
  • Smithburn KC, Hughes TP, Burke AW, et al. A neurotropic virus isolated from the blood of a native of Uganda 1. Am J Trop Med Hyg. 1940;s1-20(4):471–492.
  • Taylor RM, Rizk F, Work TH, et al. A study of the ecology of West Nile virus in Egypt 1. Am J Trop Med Hyg. 1956;5(4):579–620.
  • Work TH, Hurlbut HS, Taylor RM. Indigenous wild birds of the Nile Delta as potential West Nile virus circulating reservoirs 1. Am J Trop Med Hyg. 1955;4(5):872–888. doi: 10.4269/ajtmh.1955.4.872
  • Anderson D. Ecological studies on Sindbis and West Nile viruses in South Africa. 3. Host preferences of mosquitoes as determined by the precipitin test. S Afr J Med Sci. 1967;32(1):34–39.
  • Cornel AJ, Jupp PG. Comparison of three methods for determining transmission rates in vector competence studies with culex univittatus and West Nile and Sindbis viruses. J Am Mosq Control Assoc. 1989;5(1):70–72.
  • Jupp PG. The ecology of West Nile virus in South Africa and the occurrence of outbreaks in humans. Ann N Y Acad Sci. 2001;951(1):143–152. doi: 10.1111/j.1749-6632.2001.tb02692.x
  • Jupp PG, McIntosh BM. Ecological studies on Sindbis and West Nile viruses in South Africa. II. Mosquito bionomics. South African J Med Sci. 1967;32(1):15–33.
  • Jupp PG, McIntosh BM. Quantitative experiments on the vector capability of culex (culex) univittatus Theobald with West Nile and Sindbis viruses. J Med Entomol. 1970;7(3):371–373. doi: 10.1093/jmedent/7.3.371
  • Jupp PG, McIntosh BM, Blackburn NK. Experimental assessment of the vector competence of culex (culex) neavei Theobald with West Nile and Sindbis viruses in South Africa. Trans R Soc Trop Med. 1986;80(2):226–230. doi: 10.1016/0035-9203(86)90019-2
  • Jupp PG. Laboratory studies on the vector capability of Aedes (neomelaniconion) unidentatus McIntosh and Aedes (aedimorphus/dentatus (Theobald) with West Nile and Sindbis viruses. S Afr J Med Sci. 1976;41(4):265–269.
  • Burt FJ, Grobbelaar AA, Leman PA, et al. Phylogenetic relationships of southern African West Nile virus isolates. Emerg Infect Dis. 2002;8(8):820–826. doi: 10.3201/eid0808.020027
  • Venter M, Human S, Zaayman D, et al. Lineage 2 west Nile virus as cause of fatal neurologic disease in horses, South Africa. Emerg Infect Dis. 2009;15(6):877–884. doi: 10.3201/eid1506.081515
  • Venter M, Myers TG, Wilson MA, et al. Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology. 2005;342(1):119–140. doi: 10.1016/j.virol.2005.07.013
  • Venter M, Swanepoel R. West Nile virus lineage 2 as a cause of zoonotic neurological disease in humans and horses in southern Africa. Vector Borne Zoonotic Dis. 2010;10(7):659–664. doi: 10.1089/vbz.2009.0230
  • Steyn J, Botha E, Stivaktas VI, et al. West Nile virus in wildlife and nonequine domestic animals, South Africa, 2010–2018. Emerg Infect Dis. 2019;25(12):2290–2294. doi: 10.3201/eid2512.190572
  • Venter M, Human S, van Niekerk S, et al. Fatal neurologic disease and abortion in mare infected with lineage 1 West Nile virus, South Africa. Emerg Infect Dis. 2011;17(8):153–6. doi:10.3201/eid1708.101794
  • Mcintosh BM, Mcgillivray GM, Dickinson DB, et al. Illness caused by Sindbis and West Nile viruses in South africa. S Afr Med J. 1964;38:291–294.
  • Weinbren MP. The occurrence of West Nile virus in South Africa. S Afr Med J. 1955;29(47):1092–1097.
  • Ouhoumanne N, Lowe A-M, Fortin A, et al. Morbidity, mortality and long-term sequelae of West Nile virus disease in Québec. Epidemiol Infect. 2018;146(7):867–874.
  • Botha EM, Markotter W, Wolfaardt M, et al. Genetic determinants of virulence in pathogenic lineage 2 West Nile virus strains. Emerg Infect Dis. 2008;14(2):222–230. doi: 10.3201/eid1402.070457
  • Venter M, Burt FJ, Blumberg L, et al. Cytokine induction after laboratory-acquired West Nile virus infection. N Engl J Med. 2009;360(12):1260–1262.
  • Kokernot RH, McIntosh BM. Isolation of West Nile virus from a naturally infected human being and from a bird, sylvietta rufescens (vieillot). S Afr Med J. 1959;33(47):987–989.
  • Jupp PG, Blackburn NK, Thompson DL, et al. Sindbis and West Nile virus infections in the Witwatersrand-Pretoria region. S Afr Med J. 1986;70(4):218–220.
  • Uejio CK, Kemp A, Comrie AC. Climatic controls on West Nile virus and Sindbis virus transmission and outbreaks in South Africa. Vector Borne Zoonotic Dis. 2012;12(2):117–125. doi: 10.1089/vbz.2011.0655
  • McIntosh BM, Jupp PG, Dos Santos I, et al. Epidemics of West Nile and Sindbis viruses in South Africa with culex (culex) univittatus Theobald as vector. South African J Sci. 1976a;72(10):295–300.
  • Joubert JJ, Prozesky OW, Lourens JG, et al. Prevalence of hepatitis virus and some arbovirus infections in kavango, northern SWA/Namibia. S Afr Med J. 1985;67(13):500–502.
  • Joubert JJ, van der Merwe CA, Lourens JH, et al. Serological markers of hepatitis B virus and certain other viruses in the population of eastern Caprivi, Namibia. Trans R Soc Trop Med. 1991;85(1):101–103.
  • Mweene-Ndumba I, Siziya S, Monze M, et al. Seroprevalence of West Nile virus specific IgG and IgM antibodies in North-Western and Western provinces of Zambia. Afr H Sci. 2015;15(3):803–809. doi: 10.4314/ahs.v15i3.14
  • Velu RM, Kwenda G, Libonda L, et al. Mosquito-borne viral pathogens detected in Zambia: a systematic review. Pathogens. 2021;10(8):1007.
  • McIntosh BM, Dickinson DB, McGillivray GM. Ecological studies on Sindbis and West Nile viruses in South Africa. V. The response of birds to inoculation of virus. South African J Med Sci. 1969;34(3):77–82.
  • McIntosh BM, Jupp PG, Dickinson DB, et al. Ecological studies on Sindbis and West Nile viruses in South Africa. I. Viral activity as revealed by infection of mosquitoes and sentinel fowls. South African J Med Sci. 1967;32(1):1–14.
  • McIntosh BM, Madsen W, Dickinson DB. Ecological studies on Sindbis and West Nile viruses in South Africa. VI. The antibody response of wild birds. South African J Med Sci. 1969;34(3):83–91.
  • Editors of the South African Medical Journal. Sindbis and West Nile exanthemata in South Africa. S Afr Med J. 1968;42(9):197.
  • Zaayman D, Venter M. West Nile virus neurologic disease in humans, South Africa, September 2008–May 2009. Emerg Infect Dis. 2012;18(12):2051–2054.
  • Simpson VR, Kuebart G, Barnard B. A fatal case of wesselsbron disease in a dog. Vet Rec. 1979;105(14):329. doi: 10.1136/vr.105.14.329
  • Blackburn NK, Reyers F, Berry WL, et al. Susceptibility of dogs to West Nile virus: a survey and pathogenicity trial. J Comp Pathol. 1989;100(1):59–66. doi: 10.1016/0021-9975(89)90090-X
  • Williams JH, van Niekerk S, Human S, et al. Pathology of fatal lineage 1 and 2 West Nile virus infections in horses in South Africa. J S Afr Vet Assoc. 2014;85(1):1105. doi: 10.4102/jsava.v85i1.1105
  • Venter M, Steyl J, Human S, et al. Transmission of West Nile virus during horse autopsy. Emerg Infect Dis. 2010;16(3):573–575. doi: 10.3201/eid1603.091042
  • Simulundu E, Ndashe K, Chambaro HM, et al. West Nile virus in farmed crocodiles, Zambia, 2019. Emerg Infect Dis. 2020;26(4):811–814.
  • Guggemos HD, Fendt M, Hieke C, et al. Simultaneous circulation of two West Nile virus lineage 2 clades and bagaza virus in the Zambezi region, Namibia. PLoS negl trop dis. 2021;15(4):e0009311. doi: 10.1371/journal.pntd.0009311
  • Orba Y, Hang’ombe BM, Mweene AS, et al. First isolation of West Nile virus in Zambia from mosquitoes. Transbound Emerg Dis. 2018;65(4):933–938. doi: 10.1111/tbed.12888
  • Nwaiwu AU, Musekiwa A, Tamuzi JL, et al. The incidence and mortality of yellow fever in Africa: a systematic review and meta-analysis. BMC Infect Dis. 2021;21(1):1089.
  • Ahmed QA, Memish ZA. Yellow fever from Angola and Congo: a storm gathers. Trop Doct. 2017;47(2):92–96. doi: 10.1177/0049475517699726
  • Garske T, Van Kerkhove MD, Yactayo S, et al. Yellow fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLOS Med. 2014;11(5):e1001638.
  • Grobbelaar AA, Weyer J, Moolla N, et al. Resurgence of yellow fever in Angola, 2015–2016. Emerg Infect Dis. 2016;22(10):1854–1855. doi: 10.3201/eid2210.160818
  • Babaniyi O, Chizema E, Eshetu-Shibeshi M, et al. Risk assessment for yellow fever in western and North-Western provinces of Zambia. J Glob Infect Dis. 2015;7(1):11. doi: 10.4103/0974-777X.150884
  • Gear JH. The history of virology in South Africa. S Afr Med J. 1986;Suppl:7–10.
  • Masaninga F, Muleba M, Masendu H, et al. Distribution of yellow fever vectors in Northwestern and Western provinces, Zambia. Asian Pac J Trop Med. 2014;7S(1):S88–92. doi: 10.1016/S1995-7645(14)60210-8
  • Hanley KA, Monath TP, Weaver SC, et al. Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infect Genet Evol. 2013;19:292–311. doi: 10.1016/j.meegid.2013.03.008
  • Gubler DJ. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis. 2004;27(5):319–330. doi: 10.1016/j.cimid.2004.03.013
  • De Meillon B. Proved and potential vectors of yellow fever in South Africa. Bullet World Health Organ. 1954;11(3):443–451.
  • Bauer JH. The transmission of yellow fever by mosquitoes other than Aedes aegypti. JAMA. 1928;90(26):2091. doi: 10.1001/jama.1928.02690530019007
  • Abílio AP, Kampango A, Armando EJ, et al. First confirmed occurrence of the yellow fever virus and dengue virus vector Aedes (stegomyia) luteocephalus (Newstead, 1907) in Mozambique. Parasites Vectors. 2020;13(1):350. doi: 10.1186/s13071-020-04217-9
  • Beeuwkes H, Mahaffy AF, Burke AW, et al. Yellow fever protection test surveys in the French cameroons, French equatorial Africa, the Belgian Congo, and Angola. Trans R Soc Trop Med. 1934;28(3):233–258.
  • Mahaffy AF, Smithburn KC, Hughes TP. The distribution of immunity to yellow fever in Central and East Africa. Trans R Soc Trop Med. 1946;40(1):57–82. doi: 10.1016/0035-9203(46)90062-4
  • Freedman ML. The yellow fever situation in the bechuanaland protectorate. Bullet World Health Organ. 1954;11(3):487–492.
  • Smithburn KC, Goodner K, Dick GWA. Further studies on the distribution of immunity to yellow fever in east and south-east Africa. Ann Trop Med Parasitol. 1949;43(2):182–193. doi: 10.1080/00034983.1949.11685404
  • Pinto MR, Filipe AR. The yellow fever epidemic in Luanda in 1971. Bull Soc Pathol Exot Filiales. 1971;64(5):708–710.
  • Pinto MR, Filipe AR. Arbovirus studies in Luanda, Angola. 1. Virological and serological studies during a yellow fever epidemic. Bullet World Health Organ. 1973;49(1):31–35.
  • Jupp PG, Kemp A. What is the potential for future outbreaks of chikungunya, dengue and yellow fever in southern Africa? S Afr Med J. 1996;86(1):35–37.
  • World Health Organization. Countries with risk of yellow fever transmission and countries requiring yellow fever vaccination (November 2022). World Health Organization; 2022a. https://www.who.int/publications/m/item/countries-with-risk-of-yellow-fever-transmission-and-countries-requiring-yellow-fever-vaccination-(november-2022)
  • Zhao S, Stone L, Gao D, et al. Modelling the large-scale yellow fever outbreak in Luanda, Angola, and the impact of vaccination. PLoS negl trop dis. 2018;12(1):e0006158.
  • Wilder-Smith A, Massad E. Estimating the number of unvaccinated Chinese workers against yellow fever in Angola. BMC Infect Dis. 2018;18(1):185. doi: 10.1186/s12879-018-3084-y
  • Woodall JP, Yuill TM. Why is the yellow fever outbreak in Angola a “threat to the entire world”? Internat J Infect Dis: IJID: Official Publicat Internat Soc Infectious Dis. 2016;48:96–97.
  • Dick GWA, Kitchen SF, Haddow AJ. Zika Virus (I). Isolations and serological specificity. Trans R Soc Trop Med. 1952;46(5):509–520. doi: 10.1016/0035-9203(52)90042-4
  • Cao-Lormeau V-M, Roche C, Teissier A, et al. Zika virus, French polynesia, South Pacific, 2013. Emerg Infect Dis. 2014;20(6):1084–1086.
  • Lanciotti RS, Kosoy OL, Laven JJ, et al. Genetic and serologic properties of zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14(8):1232–1239.
  • Lowe R, Barcellos C, Brasil P, et al. The zika virus epidemic in Brazil: from discovery to future implications. Int J Environ Res Public Health. 2018;15(1):96.
  • Gutiérrez-Bugallo G, Piedra LA, Rodriguez M, et al. Vector-borne transmission and evolution of zika virus. Nat Ecol Evol. 2019;3(4):561–569. doi: 10.1038/s41559-019-0836-z
  • Musso D, Gubler DJ. Zika virus. Clin Microbiol Revi. 2016;29(3):487–524. doi: 10.1128/CMR.00072-15
  • Gyawali N, Bradbury RS, Taylor-Robinson AW. The global spread of Zika virus: is public and media concern justified in regions currently unaffected? Infect Dis Poverty. 2016;5(1):37. doi: 10.1186/s40249-016-0132-y
  • Musso D, Cao-Lormeau VM, Gubler DJ. Zika virus: Following the path of dengue and chikungunya? Lancet. 2015;386(9990):243–244. doi: 10.1016/S0140-6736(15)61273-9
  • Halani S, Tombindo PE, O’Reilly R, et al. Clinical manifestations and health outcomes associated with zika virus infections in adults: a systematic review. PLoS negl trop dis. 2021;15(7):e0009516.
  • Song B-H, Yun S-I, Woolley M, et al. Zika virus: History, epidemiology, transmission, and clinical presentation. J Neuroimmunol. 2017;308:50–64. doi: 10.1016/j.jneuroim.2017.03.001
  • National Center for Emerging and Zoonotic Infectious Diseases (U.S.). Division of Vector-Borne Diseases. Countries That Have Past Or Current Evidence Of Zika Virus Transmission (As Of January 2016) [Map]; 2016. https://stacks.cdc.gov/view/cdc/37509
  • Kokernot RH, Smithburn KC, Gandara AF, et al. Neutralization tests with sera from individuals residing in Mozambique against specific viruses isolated in Africa, transmitted by arthropods. Anais Do Instituto De Medicina Tropical. 1960;17:201–230.
  • Gudo ES, Falk KI, Ali S, et al. A historic report of zika in Mozambique: implications for assessing current risk. PLoS negl trop dis. 2016;10(12):e0005052.
  • Rückert C, Weger-Lucarelli J, Garcia-Luna SM, et al. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat Commun. 2017;8(1):15412.
  • Chelene IR, Ali S, Mula FI, et al. Retrospective investigation of IgM antibodies against Zika virus in serum from febrile patients in Mozambique, 2009-2015. BMC Res Notes. 2019;12(1):469. doi: 10.1186/s13104-019-4511-x
  • Buechler CR, Bailey AL, Weiler AM, et al. Seroprevalence of Zika virus in wild African green monkeys and baboons. mSphere. 2017;2(2):e00392–16. doi: 10.1128/mSphere.00392-16
  • Hill SC, Vasconcelos J, Neto Z, et al. Emergence of the Asian lineage of Zika virus in Angola: an outbreak investigation. Lancet Infect Dis. 2019;19(10):1138–1147.
  • Sassetti M, Zé-Zé L, Franco J, et al. First case of confirmed congenital Zika syndrome in continental Africa. Trans R Soc Trop Med. 2018;112(10):458–462.
  • Faye O, De Lourdes Monteiro M, Vrancken B, et al. Genomic epidemiology of 2015–2016 zika virus outbreak in Cape verde. Emerg Infect Dis. 2020;26(6):1084–1090.
  • Kraemer MUG, Brady OJ, Watts A, et al. Zika virus transmission in Angola and the potential for further spread to other African settings. Trans R Soc Trop Med. 2017;111(11):527–529. doi: 10.1093/trstmh/try001
  • Gear JH, Thomson PD, Hopp M, et al. Congo-Crimean haemorrhagic fever in South Africa. Report of a fatal case in the Transvaal. S Afr Med J. 1982;62(16):576–580.
  • Swanepoel R, Struthers JK, Shepherd AJ, et al. Crimean-Congo hemorrhagic fever in South Africa. Am J Trop Med Hyg. 1983;32(6):1407–1415. doi: 10.4269/ajtmh.1983.32.1407
  • Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol. 1979;15(4):307–417. doi: 10.1093/jmedent/15.4.307
  • Spengler JR, Bergeron É, Rollin PE, et al. Seroepidemiological studies of Crimean-Congo hemorrhagic fever virus in domestic and wild animals. PLoS negl trop dis. 2016;10(1):e0004210.
  • Swanepoel R, Shepherd AJ, Leman PA, et al. Investigations following initial recognition of Crimean-Congo haemorrhagic fever in South Africa and the diagnosis of 2 further cases. S Afr Med J. 1985;68(9):638–641.
  • Swanepoel R, Shepherd AJ, Leman PA, et al. Epidemiologic and clinical features of Crimean-Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg. 1987;36(1):120–132. doi: 10.4269/ajtmh.1987.36.120
  • Shepherd AJ, Swanepoel R, Shepherd SP, et al. Antibody to Crimean-Congo hemorrhagic fever virus in wild mammals from southern Africa. Am J Trop Med Hyg. 1987;36(1):133–142. doi: 10.4269/ajtmh.1987.36.133
  • Burt FJ, Swanepoel R, Braack LE. Enzyme-linked immunosorbent assays for the detection of antibody to Crimean-Congo haemorrhagic fever virus in the sera of livestock and wild vertebrates. Epidemiol Infect. 1993;111(3):547–557. doi: 10.1017/S0950268800057277
  • Blackburn NK, Searle L, Taylor P. Viral haemorrhagic fever antibodies in Zimbabwe schoolchildren. Trans R Soc Trop Med. 1982;76(6):803–805. doi: 10.1016/0035-9203(82)90113-4
  • Gear JH. The hemorrhagic fevers of Southern Africa with special reference to studies in the South African institute for medical research. Yale J Biol Med. 1982;55(3–4):207–212.
  • Kokernot RH, Smithburn KC, Paterson HE, et al. Further isolations of wesselsbron virus from mosquitoes. S Afr Med J. 1960;34:871–874.
  • McIntosh BM, Dos Santos IS, Meenehan GM. Culex (eumelanomyia) rubinotus Theobald as vector of banzi, Germiston and Witwatersrand viruses. III. Transmission of virus to hamsters by wild-caught infected C. rubinotus. J Med Entomol. 1976;12(6):645–646. doi: 10.1093/jmedent/12.6.645
  • Sharp BL, Appleton CC, Thompson DL, et al. Anthropophilic mosquitoes at Richards Bay, Natal, and arbovirus antibodies in human residents. Trans R Soc Trop Med. 1987;81(2):197–201.
  • Kokernot RH, Smithburn KC, Weinbren MP, et al. Studies on arthropod-borne viruses of Tongaland. VI. Isolation of pongola virus from Aedes (Banksinella) circumluteolus Theo. South African J Med Sci. 1957;22(2–3):81–92.
  • Jupp PG, McIntosh BM. A bionomic study of adult Aedes (Neomelaniconion) circumluteolus in northern Kwazulu, South Africa. J Am Mosq Control Assoc. 1987;3(2):131–136.
  • Groseth A, Mampilli V, Weisend C, et al. Molecular characterization of human pathogenic bunyaviruses of the nyando and Bwamba/Pongola virus groups leads to the genetic identification of Mojuí dos Campos and Kaeng Khoi virus. PLoS negl trop dis. 2014;8(9):e3147.
  • Weinbren MP, Heymann CS, Kokernot RH, et al. Studies on arthropod-borne viruses of Tongaland. VII. Simbu virus, a hitherto unknown agent isolated from Aedes (Banksinella) circumluteolus theo. S Afr J Med Sci. 1957;22(2–3):93–102.
  • Saeed MF, Li L, Wang H, et al. Phylogeny of the simbu serogroup of the genus bunyavirus. J Gen Virol. 2001;82(Pt 9):2173–2181. doi: 10.1099/0022-1317-82-9-2173
  • McIntosh BM, Smithburn KC, Paterson HE, et al. Isolation of Germiston virus, a hitherto unknown agent, from culicine mosquitoes, and a report of infection in two laboratory workers *. Am J Trop Med Hyg. 1960;9(1):62–69. doi: 10.4269/ajtmh.1960.9.62
  • Daubney R, Hudson JR, Garnham PC. Enzootic hepatitis or rift valley fever. An undescribed virus disease of sheep cattle and man from East Africa. J Pathol Bacteriol. 1931;34(4):545–579. doi: 10.1002/path.1700340418
  • Pienaar NJ, Thompson PN. Temporal and spatial history of rift valley fever in South Africa: 1950 to 2011. Onderstepoort J Vet Res. 2013;80(1):384. doi: 10.4102/ojvr.v80i1.384
  • Nanyingi MO, Munyua P, Kiama SG, et al. A systematic review of rift valley fever epidemiology 1931-2014. Infect Ecol Epidemiol. 2015;5:28024. doi: 10.3402/iee.v5.28024
  • Alexander RA. Rift valley fever in the Union. J S Afr Vet Assoc. 1951;22(3):105–112.
  • Gear J, De Meillon B, Le Roux AF, et al. Rift valley fever in South Africa; a study of the 1953 outbreak in the orange free state, with special reference to the vectors and possible reservoir hosts. S Afr Med J. 1955;29(22):514–518.
  • McIntosh BM. Rift valley fever. 1. Vector studies in the field. J S Afr Vet Med Assoc. 1972;43(4):391–395.
  • McIntosh BM, Jupp PG, dos Santos I, et al. Vector studies on rift valley fever virus in South Africa. S Afr Med J. 1980;58(3):127–132.
  • McIntosh BM, Jupp PG, Dos Santos I, et al. Field and laboratory evidence implicating culex zombaensis and Aedes circumluteolus as vectors of rift valley fever virus in coastal South Africa. South African J Sci. 1983;79(2):61–64.
  • Pepin M, Bouloy M, Bird BH, et al. Rift valley fever virus (Bunyaviridae: phlebovirus): An update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res. 2010;41(6):61. doi: 10.1051/vetres/2010033
  • Swanepoel R, Cruickshank JG. Arthropod borne viruses of medical importance in Rhodesia 1968-1973. Cent Afr J Med. 1974;20(4):71–79.
  • Jupp PG, Cornel AJ. Vector competence tests with rift valley fever virus and five South African species of mosquito. J Am Mosq Control Assoc. 1988;4(1):4–8.
  • Linthicum KJ, Britch SC, Anyamba A. Rift valley fever: an emerging mosquito-borne disease. Annu Rev Entomol. 2016;61(1):395–415. doi: 10.1146/annurev-ento-010715-023819
  • van den Bergh C, Thompson PN, Swanepoel R, et al. Detection of Rift Valley Fever Virus in aedes (aedimorphus) durbanensis, South Africa. Pathogens. 2022 Jan 21;11(2):125. doi: 10.3390/pathogens11020125.
  • Coetzer JA. The pathology of rift valley fever. I. Lesions occurring in natural cases in new-born lambs. Onderstepoort J Vet Res. 1977;44(4):205–211.
  • Coetzer JA. The pathology of Rift Valley fever. II. Lesions occurring in field cases in adult cattle, calves and aborted foetuses. Onderstepoort J Vet Res. 1982;49(1):11–17.
  • Coetzer JA, Barnard BJ. Hydrops amnii in sheep associated with hydranencephaly and arthrogryposis with wesselsbron disease and rift valley fever viruses as aetiological agents. Onderstepoort J Vet Res. 1977;44(2):119–126.
  • Davies FG, Kilelu E, Linthicum KJ, et al. Patterns of rift valley fever activity in Zambia. Epidemiol Infect. 1992;108(1):185–191.
  • Fafetine JM, Coetzee P, Mubemba B, et al. Rift valley fever outbreak in livestock, Mozambique, 2014. Emerg Infect Dis. 2016;22(12):2165–2167. doi: 10.3201/eid2212.160310
  • Lagerqvist N, Moiane B, Mapaco L, et al. Antibodies against rift valley fever virus in cattle, Mozambique. Emerg Infect Dis. 2013;19(7):1177–1179. doi: 10.3201/eid1907.130332
  • van der Riet FD, Sayed AR, Barnard BJ, et al. Arthropod-borne virus zoonosis surveillance in the cape province: 1. Prospective serological investigations for virus activity in the Beaufort West and Middelburg districts during 1981. J S Afr Vet Assoc. 1985;56(1):25–29.
  • Anywaine Z, Lule SA, Hansen C, et al. Clinical manifestations of rift valley fever in humans: systematic review and meta-analysis. PLoS negl trop dis. 2022;16(3):e0010233.
  • Mundel B, Gear J. Rift valley fever; I. The occurrence of human cases in Johannesburg. S Afr Med J. 1951;25(44):797–800.
  • van der Linde NT. A recent epidemic of rift valley fever in the orange free state. J S Afr Vet Assoc. 1953;24(3):145–148.
  • Shone DK. Rift Valley fever in Southern Rhodesia. Cent Afr J Med. 1958;4(7):284–286.
  • Stern L. Rift Valley fever in Rhodesia; report of a case in a laboratory worker. Cent Afr J Med. 1958;4(7):281–284.
  • McIntosh BM, Russell D, dos Santos I, et al. Rift Valley fever in humans in South Africa. S Afr Med J. 1980;58(20):803–806.
  • Swanepoel R, Manning B, Watt JA. Fatal Rift Valley fever of man in Rhodesia. Cent Afr J Med. 1979;25(1):1–8.
  • Tessier SF, Rollin PE, Sureau P. Viral haemorrhagic fever survey in Chobe (Botswana). Trans R Soc Trop Med. 1987;81(4):699–700. doi: 10.1016/0035-9203(87)90462-7
  • Niklasson B, Liljestrand J, Bergström S, et al. Rift Valley fever: A sero-epidemiological survey among pregnant women in Mozambique. Epidemiol Infect. 1987;99(2):517–522.
  • Baudin M, Jumaa AM, Jomma HJE, et al. Association of Rift Valley fever virus infection with miscarriage in Sudanese women: a cross-sectional study. Lancet Glob Health. 2016;4(11):e864–e871. doi: 10.1016/S2214-109X(16)30176-0
  • Pawęska JT, Msimang V, Kgaladi J, et al. Rift Valley fever virus seroprevalence among humans, northern KwaZulu-Natal Province, South Africa, 2018–2019. Emerg Infect Dis. 2021;27(12):3159–3162. doi: 10.3201/eid2712.210643
  • Sanderson CE, Jori F, Moolla N, et al. Silent circulation of Rift Valley fever in humans, Botswana, 2013–2014. Emerg Infect Dis. 2020;26(10):2453–2456. doi: 10.3201/eid2610.191837
  • Gudo ES, Pinto G, Weyer J, et al. Serological evidence of rift valley fever virus among acute febrile patients in Southern Mozambique during and after the 2013 heavy rainfall and flooding: implication for the management of febrile illness. Virol J. 2016;13(1):96.
  • Jansen van Vuren P, Kgaladi J, Msimang V, et al. Rift Valley fever reemergence after 7 years of quiescence, South Africa, May 2018. Emerg Infect Dis. 2019;25(2):338–341.
  • Pachka H, Annelise T, Alan K, et al. Rift Valley fever vector diversity and impact of meteorological and environmental factors on culex pipiens dynamics in the Okavango Delta, Botswana. Parasites Vect. 2016;9(1):434.
  • Anyamba A, Linthicum KJ, Small J, et al. Prediction, assessment of the Rift Valley fever activity in East and Southern Africa 2006-2008 and possible vector control strategies. Am J Trop Med Hyg. 2010;83(2 Suppl):43–51.
  • Glancey MM, Anyamba A, Linthicum KJ. Epidemiologic and environmental risk factors of Rift Valley fever in Southern Africa from 2008 to 2011. Vector Borne Zoonotic Dis. 2015;15(8):502–511. doi: 10.1089/vbz.2015.1774
  • Verster AM, Liang JE, Rostal MK, et al. Selected wetland soil properties correlate to Rift Valley fever livestock mortalities reported in 2009-10 in central South Africa. PLoS One. 2020;15(5):e0232481. doi: 10.1371/journal.pone.0232481
  • Kitandwe PK, McKay PF, Kaleebu P, et al. An overview of Rift Valley fever vaccine development strategies. Vaccines. 2022;10(11):1794.
  • Weinbren MP, Williams MC, Haddow AJ. A variant of Rift Valley fever virus. S Afr Med J. 1957;31(38):951–957.
  • Lumley S, Horton DL, Marston DA, et al. Complete genome sequence of Rift Valley fever virus strain Lunyo. Genome Announc. 2016;4(2):e00170–16. doi: 10.1128/genomeA.00170-16
  • Lumsden WHR. An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953 II. General description and epidemiology. Trans R Soc Trop Med. 1955;49(1):33–57. doi: 10.1016/0035-9203(55)90081-X
  • Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Trans R Soc Trop Med. 1955;49(1):28–32. doi: 10.1016/0035-9203(55)90080-8
  • Weaver SC, Forrester NL. Chikungunya: evolutionary history and recent epidemic spread. Antiviral Res. 2015;120:32–39. doi: 10.1016/j.antiviral.2015.04.016
  • McIntosh BM, Jupp PG, Dos Santos I. Rural epidemic of chikungunya in South Africa with involvement of Aedes (diceromyia) furcifer (Edwards) and Baboons. South African J Sci. 1977;73(9):267–269.
  • Jupp PG, McIntosh BM, Dos Santos I, et al. Laboratory vector studies on six mosquito and one tick species with chikungunya virus. Trans R Soc Trop Med. 1981;75(1):15–19.
  • Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nature Rev Microbiol. 2010;8(7):491–500. doi: 10.1038/nrmicro2368
  • Rajapakse S, Rodrigo C, Rajapakse A. Atypical manifestations of chikungunya infection. Trans R Soc Trop Med. 2010;104(2):89–96. doi: 10.1016/j.trstmh.2009.07.031
  • Mcintosh BM, Harwin RM, Paterson HE, et al. An epidemic of chikungunya in South-Eastern Rhodesia. Cent Afr J Med. 1963;9:351–359.
  • Paterson HE, Mcintosh BM. Further studies on the chikungunya outbreak in Southern Rhodesia in 1962. II. transmission experiments with the Aedes furcifer -taylori group of mosquitoes and with a member of the anopheles gambiae complex. Ann Trop Med Parasitol. 1964;58:52–55.
  • Rodger LM. An outbreak of suspected chikungunya fever in Northern Rhodesia. S Afr Med J. 1961;35:126–128.
  • Filipe AF, Pinto MR. Arbovirus studies in Luanda, Angola. 2. Virological and serological studies during an outbreak of dengue-like disease caused by the Chikungunya virus. Bullet World Health Organ. 1973;49(1):37–40.
  • van den Bosch C, Lloyd G. Chikungunya fever as a risk factor for endemic Burkitt’s lymphoma in Malawi. Trans R Soc Trop Med. 2000;94(6):704–705. doi: 10.1016/S0035-9203(00)90240-2
  • Aly MM, Ali S, Muianga AF, et al. Severe Chikungunya infection in northern Mozambique: a case report. BMC Res Notes. 2017;10(1):88.
  • António VS, Amade NA, Muianga AF, et al. Retrospective investigation of antibodies against chikungunya virus (CHIKV) in serum from febrile patients in Mozambique, 2009–2015: implications for its prevention and control. PLoS One. 2019;14(3):e0213941. doi: 10.1371/journal.pone.0213941
  • António VS, Muianga AF, Wieseler J, et al. Seroepidemiology of Chikungunya virus among febrile patients in eight health facilities in Central and Northern Mozambique, 2015-2016. Vector Borne Zoonotic Dis. 2018;18(6):311–316.
  • Gudo ES, Ali S, António VS, et al. Seroepidemiological studies of arboviruses in Africa. Adv Exp Med Biol. 2018;1062:361–371.
  • Gudo ES, Black JFP, Cliff JL, et al. Chikungunya in Mozambique: A forgotten history. PLoS negl trop dis. 2016;10(11):e0005001. doi: 10.1371/journal.pntd.0005001
  • Gudo ES, Pinto G, Vene S, et al. Serological evidence of Chikungunya virus among acute febrile patients in Southern Mozambique. PLoS negl trop dis. 2015;9(10):e0004146.
  • Mugabe VA, Ali S, Chelene I, et al. Evidence for chikungunya and dengue transmission in Quelimane, Mozambique: results from an investigation of a potential outbreak of chikungunya virus. PLoS One. 2018;13(2):e0192110. doi: 10.1371/journal.pone.0192110
  • Muianga A, Pinto G, Massangaie M, et al. Antibodies against Chikungunya in Northern Mozambique during Dengue outbreak, 2014. Vector Borne Zoonotic Dis. 2018;18(8):445–449.
  • Chisenga CC, Bosomprah S, Musukuma K, et al. Sero-prevalence of arthropod-borne viral infections among Lukanga swamp residents in Zambia. PLoS One. 2020;15(7):e0235322. doi: 10.1371/journal.pone.0235322
  • Parreira R, Centeno-Lima S, Lopes A, et al. Dengue virus serotype 4 and chikungunya virus coinfection in a traveller returning from Luanda, Angola, January 2014. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin. 2014;19(10):20730.
  • Takaya S, Kutsuna S, Nakayama E, et al. Chikungunya fever in traveler from Angola to Japan, 2016. Emerg Infect Dis. 2017;23(1):156–158. doi: 10.3201/eid2301.161395
  • Kokernot RH, De Meillon B, Paterson HE, et al. Middelburg virus; a hitherto unknown agent isolated from Aedes mosquitoes during an epizootic in sheep in the eastern Cape province. South African J Med Sci. 1957;22(4):145–153.
  • Hubálek Z, Rudolf I, Nowotny N. Arboviruses pathogenic for domestic and wild animals. Adv Virus Res. 2014;89:201–275.
  • Attoui H, Sailleau C, Mohd Jaafar F, et al. Complete nucleotide sequence of Middelburg virus, isolated from the spleen of a horse with severe clinical disease in Zimbabwe. J Gen Virol. 2007;88(Pt 11):3078–3088. doi: 10.1099/vir.0.83076-0
  • Fourie I, Snyman J, Williams J, et al. Epidemiological and genomic characterisation of Middelburg and Sindbis alphaviruses identified in horses with febrile and neurological infections, South Africa (2014–2018). Viruses. 2022;14(9):2013.
  • van Niekerk S, Human S, Williams J, et al. Sindbis and Middelburg old World alphaviruses associated with neurologic disease in horses, South Africa. Emerg Infect Dis. 2015;21(12):2225–2229. doi: 10.3201/eid2112.150132
  • Steyn J, Fourie I, Steyl J, et al. Zoonotic alphaviruses in fatal and neurologic infections in wildlife and nonequine domestic animals, South Africa. Emerg Infect Dis. 2020;26(6):1182–1191. doi: 10.3201/eid2606.191179
  • Fourie I, Williams J, Ismail A, et al. Detection and genome characterization of Middelburg virus strains isolated from CSF and whole blood samples of humans with neurological manifestations in South Africa. PLoS negl trop dis. 2022;16(1):e0010020.
  • Smithburn KC, Haddow AJ. Semliki forest virus. I. Isolation and pathogenic properties. J Immunol. 1944;49(3):141–157. doi: 10.4049/jimmunol.49.3.141
  • Mcintosh BM, Worth CB, Kokernot RH. Isolation of Semliki Forest virus from Aedes (aedimorphus) argenteopunctatus (Theobald) collected in Portuguese East Africa. Trans R Soc Trop Med. 1961;55(2):192–198. doi: 10.1016/0035-9203(61)90025-6
  • Woodall JP, Bertram DS. The transmission of Semliki forest virus by Aedes aegypti L. Trans R Soc Trop Med. 1959;53(6):440–444. doi: 10.1016/0035-9203(59)90019-7
  • Mathiot CC, Grimaud G, Garry P, et al. An outbreak of human Semliki forest virus infections in Central African republic. Am J Trop Med Hyg. 1990;42(4):386–393. doi: 10.4269/ajtmh.1990.42.386
  • Storm N, Weyer J, Markotter W, et al. Human cases of Sindbis fever in South Africa, 2006-2010. Epidemiol Infect. 2014;142(2):234–238. doi: 10.1017/S0950268813000964
  • Malherbe H, Strickland-Cholmley M. Sindbis virus infection in man. Report of a case with recovery of virus from skin lesions. S Afr Med J. 1963;37(21):547–552.
  • Jupp PG, Phillips JI. An electron microscopical study of Rift Valley fever and Sindbis viral infection in mosquito salivary glands (Diptera: Culicidae). African Entomol. 1998;6(1):75–81.
  • Guarido MM, Fourie I, Meno K, et al. Alphaviruses detected in mosquitoes in the North-Eastern regions of South Africa, 2014 to 2018. Viruses. 2023;15(2):414. doi: 10.3390/v15020414
  • Eisenhut M, Schwarz TF, Hegenscheid B. Seroprevalence of dengue, chikungunya and Sindbis virus infections in German aid workers. Infection. 1999;27(2):82–85. doi: 10.1007/BF02560502
  • Maar SA. A case of sindbis virus infection in Zimbabwe. Cent Afr J Med. 1980;26(7):161–162.
  • Meno K, Yah C, Mendes A, et al. Incidence of Sindbis virus in hospitalized patients with acute fevers of unknown cause in South Africa, 2019–2020. Front Microbiol. 2021;12:798810. doi: 10.3389/fmicb.2021.798810
  • Weinbren MP, Kokernot RH, Smithburn KC. Strains of Sindbis-like virus isolated from culicine mosquitoes in the Union of South Africa. I. Isolation and properties. S Afr Med J. 1956;30(27):631–636.
  • Weiss KE, Haig DA, Alexander RA, et al. Wesselsbron virus—a virus not previously described, associated with abortion in domestic animals. Onderstepoort J Veterin Res. 1956;27(2):183–195.
  • Muspratt J, Smithburn KC, Paterson HE, et al. Studies on arthropod-borne viruses of Tongaland. X. The laboratory transmission of Wesselsbron virus by the bite of Aedes (Banksinella) circumluteolus theo. South African J Med Sci. 1957;22(2–3):121–126.
  • Smithburn KC, Kokernot RH, Weinbren MP, et al. Studies on arthropod-borne viruses of Tongaland. IX. Isolation of Wesselsbron virus from a naturally infected human being and from Aedes (Banksinella) circumluteolus theo. South African J Med Sci. 1957;22(2–3):113–120.
  • Coetzer JA, Theodoridis A. Clinical and pathological studies in adult sheep and goats experimentally infected with Wesselsbron disease virus. Onderstepoort J Vet Res. 1982;49(1):19–22.
  • Mushi EZ, Binta MG, Raborokgwe M. Wesselsbron disease virus associated with abortions in goats in Botswana. J Vet Diagn Invest. 1998;10(2):191. doi: 10.1177/104063879801000216
  • Neitz WO. Wesselsbron disease. Bull Off Int Epizoot. 1966;65(9):1735–1741.
  • Blackburn NK, Swanepoel R. An investigation of flavivirus infections of cattle in Zimbabwe Rhodesia with particular reference to Wesselsbron virus. J Hyg (Lond). 1980;85(1):1–33. doi: 10.1017/S0022172400027066
  • Heymann CS, Kokernot RH, De Meillon B. Wesselsbron virus infections in man. S Afr Med J. 1958;32(21):543–545.
  • Jupp PG, Kemp A. Studies on an outbreak of Wesselsbron virus in the free state Province, South Africa. J Am Mosq Control Assoc. 1998;14(1):40–45.
  • Weyer J, Thomas J, Leman PA, et al. Human cases of Wesselsbron disease, South Africa 2010-2011. Vector Borne Zoonotic Dis. 2013;13(5):330–336. doi: 10.1089/vbz.2012.1181
  • Paterson HE, Kokernot RH, Davis SH. Studies of arthropod-borne viruses of Tongaland. IV. The birds of tongaland and their possible role in virus disease. S Afr J Med Sci. 1957;22(2–3):63–69.
  • Worth CB, Paterson HE, De Meillon B. The incidence of arthropod-borne viruses in a population of culicine mosquitoes in Tongaland, Union of South Africa (January, 1956, through April, 1960). Am J Trop Med Hyg. 1961;10:583–592.
  • Kokernot RH, INTOSH BM, Worth CB, et al. Isolation of viruses from mosquitoes collected at Lumbo, Mozambique. II. Mossuril virus, a new virus isolated from the culex (culex) sitiens Wiedemann group. Am J Trop Med Hyg. 1962;11:683–684.
  • Vasilakis N, Tesh RB, Popov VL, et al. Exploiting the legacy of the arbovirus hunters. Viruses. 2019;11(5):471.
  • Kagaayi J, Serwadda D. The history of the HIV/AIDS epidemic in Africa. Current HIV/AIDS Reports. 2016;13(4):187–193. doi: 10.1007/s11904-016-0318-8
  • Berrang Ford L. Civil conflict and sleeping sickness in Africa in general and Uganda in particular. Confl Health. 2007;1(1):6. doi: 10.1186/1752-1505-1-6
  • National Institutes of Health. Research Portfolio Online Reporting Tools Expenditures And Results (RePorter) [Dataset]; 2023. https://reporter.nih.gov
  • Kading RC, Cohnstaedt LW, Fall K, et al. Emergence of arboviruses in the United States: the boom and bust of funding, innovation, and capacity. Trop Med Infect Dis. 2020;5(2):96.
  • Kramer IM, Pfeiffer M, Steffens O, et al. The ecophysiological plasticity of Aedes aegypti and Aedes albopictus concerning overwintering in cooler ecoregions is driven by local climate and acclimation capacity. Sci Total Environ. 2021;778:146128. doi: 10.1016/j.scitotenv.2021.146128
  • Venter M, Zaayman D, van Niekerk S, et al. Macroarray assay for differential diagnosis of meningoencephalitis in southern Africa. J Clin Virol. 2014;60(1):50–56.
  • Petit MJ, Shah PS. Mapping arbovirus-vector interactions using systems biology techniques. Front Cell Infect Microbiol. 2019;8:440. doi: 10.3389/fcimb.2018.00440
  • Tourlet S, Radjasandirane R, Diharce J, et al. AlphaFold2 update and perspectives. BioMedinformat. 2023;3(2):378–390. doi: 10.3390/biomedinformatics3020025
  • Gesto JSM, Ribeiro GS, Rocha MN, et al. Reduced competence to arboviruses following the sustainable invasion of Wolbachia into native Aedes aegypti from Southeastern Brazil. Sci Rep. 2021;11(1):10039. doi: 10.1038/s41598-021-89409-8
  • Kamtchum-Tatuene J, Makepeace BL, Benjamin L, et al. The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections. Curr Opin Infect Dis. 2017;30(1):108–116.
  • Rainey SM, Shah P, Kohl A, et al. Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges. J Gen Virol. 2014;95(Pt 3):517–530. doi: 10.1099/vir.0.057422-0
  • Ant TH, Mancini MV, McNamara CJ, et al. Wolbachia-virus interactions and arbovirus control through population replacement in mosquitoes. Pathog Glob Health. 2023;117(3):245–258. doi: 10.1080/20477724.2022.2117939
  • Denton JA, Joubert DA, Goundar AA, et al. International shipments of Wolbachia-infected mosquito eggs: towards the scaling-up of World mosquito program operations. Rev Sci Tech. 2022;41(1):91–99. doi: 10.20506/rst.41.1.3306
  • Buchori D, Mawan A, Nurhayati I, et al. Risk assessment on the Release of Wolbachia-infected Aedes aegypti in Yogyakarta, Indonesia. Insects. 2022;13(10):924. doi: 10.3390/insects13100924
  • Koerich LB, Sant’anna MRV, Huits R. Recent technological advances and strategies for arbovirus vector control. Trop Med Infect Dis. 2022;7(9):204. doi: 10.3390/tropicalmed7090204
  • World Health Organization. Global strategic framework for integrated vector management. World Health Organization; 2004. https://www.who.int/publications/i/item/WHO-CDS-CPE-PVC-2004.10#
  • Wanyenze RK, Alfvén T, Ndejjo R, et al. Sustainable health—a call to action. BMC Global and Publ Health. 2023;1(1):3. doi: 10.1186/s44263-023-00007-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.