52
Views
0
CrossRef citations to date
0
Altmetric
Articles

Determining the temporal factors of survival associated with brain and nervous system cancer patients: A hybrid machine learning methodology

, , ORCID Icon, , , & ORCID Icon show all
Pages 453-467 | Received 16 Sep 2022, Accepted 23 Mar 2023, Published online: 01 Apr 2023

References

  • Centers for Disease Control and Prevention. (2022). An Update on Cancer Deaths in the United States. Retrieved 2022, from https://www.cdc.gov/cancer/dcpc/research/update-on-cancer-deaths/index.htm.
  • American Cancer Society. (2021). Cancer Facts and Figures 2021. Retrieved 2022, from https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html.
  • Farmanfarma K, Mohammadian M, Shahabinia Z, et al. Brain cancer in the world: an epidemiological review. World Cancer Res J. 2019: 1–5. doi:10.32113/wcrj_20197_1356.
  • International Agency for Research on Cancer. (2020). Cancer Today. Retrieved 2022, from https://gco.iarc.fr/today/data/factsheets/cancers/31-Brain-central-nervous-system-fact-sheet.pdf.
  • National Cancer Institute. (2021). Cancer Stat Facts: Brain and Other Nervous System Cancer. Retrieved 2022, from Surveillance, Epidemiology, and End Results (SEER) Program: https://seer.cancer.gov/statfacts/html/brain.html.
  • Liu C, Zong H. Developmental origins of brain tumors. Curr Opin Neurobiol 2012;22(5):844–849. doi:10.1016/j.conb.2012.04.012.
  • Australian institute of health and welfare. Brain and other central nervous system cancers. Canberra: Australian Institute of Health and Welfare; 2017.
  • GBD 2016 Brain and Other CNS Cancer Collaborators. Global, regional, and national burden of brain and other CNS cancer, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology. 2019;18(4):376–393. doi:10.1016/S1474-4422(18)30468-X.
  • Ostrom Q, Cioffi G, Gittleman H, et al. Cbtrus statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncology. 2019;21:v1–v100. doi:10.1093/neuonc/noz150.
  • Miller KD, Ostrom QT, Kruchko C, et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 2021;71:381–406. doi:10.3322/caac.21693.
  • Maher EA, McKee AC. Atlas of diagnostic oncology (Vol. 3). (A. T. Skarin, & G. P. Canellos, Eds.). London: Elsevier Science Ltd; 2003.
  • Wrensch M, Minn Y, Chew T, et al. Epidemiology of primary brain tumors: current concepts and review of theliterature. Neuro Oncol. 2002;4(4):278–299. doi:10.1093/neuonc/4.4.278.
  • Agrawal A, Misra S, Narayanan R, et al. Lung cancer survival prediction using ensemble data mining on SEER data. Sci Program. 2012;20:29–42. doi:10.1155/2012/920245.
  • Chang C-C, Chen S-H. Developing a novel machine learning-based classification scheme for predicting SPCs in breast cancer survivors. Front Genet. 2019;10; doi:10.3389/fgene.2019.00848.
  • Sotoudeh H, Shafaat O, Bernstock JD, et al. Artificial intelligence in the management of glioma: era of personalized medicine. Front Oncol. 2019;9; doi:10.3389/fonc.2019.00768.
  • Aikemu B, Xue P, Hong H, et al. Artificial intelligence in decision-making for colorectal cancer treatment strategy: an observational study of implementing watson for oncology in a 250-case cohort. Front Oncol. 2021;10; doi:10.3389/fonc.2020.594182.
  • Wong D, Yip S. Machine learning classifies cancer. Nature. 2018;555:446–447. doi:10.1038/d41586-018-02881-7.
  • Hossain T, Shishir FS, Ashraf M, et al. Brain tumor detection using convolutional neural network. 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT); 2019 (pp. 1-6); IEEE.
  • Upadhyay N, Waldman AD. Conventional MRI evaluation of gliomas. Br J Radiol. 2011;84:S107–S111. doi:10.1259/bjr/65711810.
  • Dahab D, Ghoniemy S, Selim G. Automated brain tumor detection and identification using image processing and probabilistic neural network techniques. Int J Image Process Visual Commun. 2012;1(2):1–8.
  • Abdar M, Fahami MA, Rundo L, et al. Hercules: deep hierarchical attentive multilevel fusion model with uncertainty quantification for medical image classification. IEEE Trans Ind Inf. 2023;19(1):274–285. doi:10.1109/TII.2022.3168887.
  • Jaberipour M, Soliman H, Sahgal A, et al. A priori prediction of local failure in brain metastasis after hypo-fractionated stereotactic radiotherapy using quantitative MRI and machine learning. Sci Rep. 2021;11; doi:10.1038/s41598-021-01024-9.
  • Datta S, Chakraborty M. Brain tumor detection from pre-processed MR images using segmentation techniques. Special Issue on 2nd National Conference- Computing, Communication and Sensor Network (CCSN); 2011; IJCA.
  • Delen D. Analysis of cancer data: a data mining approach. Expert Syst. 2009;26(1):100–112. doi:10.1111/j.1468-0394.2008.00480.x.
  • Choi JP, Han TH, Park RW. A hybrid Bayesian network model for predicting breast cancer prognosis. J Korean Soc Med Inf. 2009;15(1):49–57. doi:10.4258/jksmi.2009.15.1.49.
  • Thongprayoon C, Mao MA, Keddis MT, et al. Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival. J Nephrol. 2022;35:921–929. doi:10.1007/s40620-021-01163-2.
  • Chen H, Li C, Zheng L, et al. A machine learning-based survival prediction model of high grade glioma by integration of clinical and dose-volume histogram parameters. Cancer Med. 2021;10(8):2774–2786. doi:10.1002/cam4.3838.
  • García-Laencina PJ, Abreu PH, Abreu MH, et al. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values. Comput Biol Med 2015;59:125–133. doi:10.1016/j.compbiomed.2015.02.006.
  • Lundin M, Lundin J, Burke H, et al. Artificial neural networks applied to survival prediction in breast cancer. Oncology. 1999;57:281–286. doi:10.1159/000012061.
  • Boughorbel S, Al-Ali R, Elkum N. Model comparison for breast cancer prognosis based on clinical data. PLoS ONE. 2016;11(1):e0146413), doi:10.1371/journal.pone.0146413.
  • Simsek S, Kursuncu U, Kibis E, et al. A hybrid data mining approach for identifying the temporal effects of variables associated with breast cancer survival. Expert Syst Appl. 2020;139:112863, doi:10.1016/j.eswa.2019.112863.
  • Fang W, Yang Z-Y, Chen T-Y, et al. Ethnicity and survival in bladder cancer: a population-based study based on the SEER database. J Transl Med. 2020;18(1):1–11. doi:10.1186/s12967-020-02308-w.
  • Sun H, Ma H, Hong G, et al. Survival improvement in patients with pancreatic cancer by decade: a period analysis of the SEER database, 1981–2010. Sci Rep. 2014;4(1):1–10. doi:10.1038/srep06747.
  • Zhu L, Sun X, Bai W. Clinical applications and future directions of minimal residual disease testing in multiple myeloma. Front Oncol. 2020;10:1–12. doi:10.3389/fonc.2020.00001.
  • Rosenberg J, Chia L, Plevritis S. The effect of age, race, tumor size, tumor grade, and disease stage on invasive ductal breast cancer survival in the U.S. SEER database. SEER Database. Breast Cancer Res Treat. 2005;89:47–54. doi:10.1007/s10549-004-1470-1.
  • Bohn A, Braley A, Vega P, et al. The association between race and survival in glioblastoma patients in the US: a retrospective cohort study. PLoS ONE. 2018;13(6):e0198581–10. doi:10.1371/journal.pone.0198581.
  • Senders JT, Staples P, Mehrtash A, et al. An online calculator for the prediction of survival in glioblastoma patients using classical statistics and machine learning. Neurosurgery. 2020;86(2):E184–E192. doi:10.1093/neuros/nyz403.
  • Surveillance, Epidemiology, and End Results (SEER) Program. (1975-2018). National Cancer Institute. Retrieved 2022, from Surveillance, Epidemiology, and End Results (SEER) Program: https://seer.cancer.gov/.
  • Doraisami S, Golzari S, Norowi N, et al. A study on feature selection and classification techniques for automatic genre classification of traditional malay music. In: ISMIR. Philadelphia, PA; 2008. p. 331–336.
  • Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med. 2005;34(2):113–127. doi:10.1016/j.artmed.2004.07.002.
  • Ding H, Guo SH, Deng EZ, et al. Prediction of golgi-resident protein types by using feature selection technique. Chemom Intell Lab Syst. 2013;124:9–13. doi:10.1016/j.chemolab.2013.03.005.
  • Lin H, Ding H. Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. J Theor Biol 2011;269:64–69. doi:10.1016/j.jtbi.2010.10.019.
  • Nasiri H, Alavi S. A novel framework based on deep learning and ANOVA feature selection method for diagnosis of COVID-19 cases from chest X-Ray images. Comput Intell Neurosci. 2022;2022:1, doi:10.1155/2022/4694567.
  • Genuer R, Poggi M, Tuleau-Malot C. Variable selection using random forests. Pattern Recognit Lett. 2010;31(14):2225–2236. doi:10.1016/j.patrec.2010.03.014.
  • Pan X, Shen H. Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. Protein Pept Lett 2009;16(12):1447–1454. doi:10.2174/092986609789839250.
  • Deng H, Runger G. Gene selection with guided regularized random forest. Pattern Recognit. 2013;46(12):3483–3489. doi:10.1016/j.patcog.2013.05.018.
  • Breiman L. Random forests. Mach Learn. 2001;45:5–32. doi:10.1023/A:1010933404324.
  • Zhu J, Lu W, Liu L, et al. Classification of SRC kinase inhibitors based on support vector machine. QSAR and Combinatorial Science. 2009;28(6):719–727. doi:10.1002/qsar.200860105.
  • Yang F, Hamit M, Yan CB, et al. Feature extraction and classification on esophageal X-ray images of Xinjiang Kazak nationality. Data Min Biomed Healthcare. 2017;2017:1, doi:10.1155/2017/4620732.
  • Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 2002;38(4):367–378. doi:10.1016/S0167-9473(01)00065-2.
  • Schapire RE, Singer Y. Improved boosting algorithms using confidence-rated predictions. Mach Learn. 1999;37(3):297–336. doi:10.1023/A:1007614523901.
  • Friedman JH, Meulman JJ. Multiple additive regression trees with application in epidemiology. Stat Med. 2003;22(9):1365–1381. doi:10.1002/sim.1501.
  • Alzamzami F, Hoda M, Saddik AE. Light gradient boosting machine for general sentiment classification on short texts: a comparative evaluation. IEEE Access. 2020;8:101840–101858. doi:10.1109/ACCESS.2020.2997330.
  • Shin Y. Application of stochastic gradient boosting approach to early prediction of safety accidents at construction site. Adv Civil Eng. 2019: 9, doi:10.1155/2019/1574297.
  • Sun R, Wang G, Zhang W, et al. A gradient boosting decision tree based GPS signal reception classification algorithm. Appl Soft Comput. 2020;86; doi:10.1016/j.asoc.2019.105942.
  • Carmona P, Climent F, Momparler A. Predicting failure in the U.S. banking sector: an extreme gradient boosting approach. Int Rev Econ Fin. 2019;61:304–323. doi:10.1016/j.iref.2018.03.008.
  • Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. New York: Springer; 2001.
  • Johnson RA, Wichern DW. Applied multivariate statistical analysis. London: Pearson Education, Inc; 2013.
  • Artificial Neural Networks. In: PJ Braspenning, F Thuijsman, AJMM Weijters, editor. Lecture notes in computer science. Berlin Heidelberg: Springer; 1995.
  • Nath G, Wang Y, Coursey A, et al. Incorporating a machine learning model into a Web-based administrative decision support tool for predicting workplace absenteeism. Information. 2022;13(7):320. MDPI AG, doi:10.3390/info13070320.
  • Wolff P, Graña M, Ríos S, et al. Machine learning readmission risk modeling: a pediatric case study. Biomed Res Int. 2019;9; doi:10.1155/2019/8532892.
  • Ahmad I, Yousaf M, Yousaf S, et al. Fake news detection using machine learning ensemble methods. Complexity. 2020;2020:1, doi:10.1155/2020/8885861.
  • Fawcett T. ROC graphs: notes and practical considerations for researchers. Mach Learn. 2004;31:1–38.
  • Zhang K, Su H, Dou Y. Beyond AP: a new evaluation index for multiclass classification task accuracy. Appl Intell. 2021;51:7166–7176. doi:10.1007/s10489-021-02223-7.
  • Chawla N, Bower K, Hall L, et al. Smote: synthetic minority over-sampling technique. J Artif Intell Res. 2002: 321–357. doi:10.1613/jair.953.
  • May RJ, Maier HR, Dandy GC. Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw. 2010;23(2):283–294. doi:10.1016/j.neunet.2009.11.009.
  • Han J, Kamber M. Data mining: concepts and techniques. Waltham (MA): Elsevier; 2006.
  • Kim J, Shin H. Breast cancer survivability prediction using labeled, unlabeled, and pseudo-labeled patient data. J Am Med Inform Assoc. 2013;20:613–618. doi:10.1136/amiajnl-2012-001570.
  • Barami K, Lyon L, Conell C. Type 2 diabetes mellitus and glioblastoma multiforme-assessing risk and survival: results of a large retrospective study and systematic review of the literature. World Neurosurg. 2017;106:300–307. doi:10.1016/j.wneu.2017.06.164.
  • Samara KA, Al Aghbari Z, Abusafia A. GLIMPSE: a glioblastoma prognostication model using ensemble learning—a surveillance, epidemiology, and end results study. Health Inf Sci Syst. 2021;9(1). doi:10.1007/s13755-020-00134-4.
  • Dag AZ, Akcam Z, Kibis E, et al. A probabilistic data analytics methodology based on Bayesian Belief network for predicting and understanding breast cancer survival. Knowl Based Syst. 2022;242:108407, doi:10.1016/j.knosys.2022.108407.
  • Scosyrev E, Messing J, Noyes K, et al. Surveillance Epidemiology and End Results (SEER) program and population-based research in urologic oncology: an overview. Urol Oncol: Semin Orig Invest. 2012;30(2):126–132. doi:10.1016/j.urolonc.2009.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.