1,663
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Wrinkle-structured MXene film assists flexible pressure sensors with superhigh sensitivity and ultrawide detection range

, , , , , ORCID Icon & ORCID Icon show all
Pages 81-94 | Received 06 Jan 2022, Accepted 11 Mar 2022, Published online: 21 Apr 2022

References

  • Koo JH, Kim DC, Shim HJ, et al. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv Funct Mater. 2018;28(35):1801834.
  • Kang H, Zhao CL, Huang JR, et al. Fingerprint-Inspired conducting hierarchical wrinkles for energy-harvesting e-skin. Adv Funct Mater. 2019;29(43):1903580. 10,
  • Chan YT, Skreta M, McPhee H, et al. Solution-processed wrinkled electrodes enable the development of stretchable electrochemical biosensors. Analyst. 2018;144(1):172–179.
  • Kim J, Chou EF, Le J, et al. Soft wearable pressure sensors for beat-to-beat blood pressure monitoring. Adv Healthcare Mater. 2019;8(13):1900109. 9,
  • Gao NW, Zhang XY, Liao SL, et al. Polymer swelling induced conductive wrinkles for an ultrasensitive pressure sensor. ACS Macro Lett. 2016;5(7):823–827.
  • Xue PD, Chen C, Diao DF. Ultra-sensitive flexible strain sensor based on graphene nanocrystallite carbon film with wrinkle structures. Carbon. 2019;147:227–235.
  • Fan HW, Li KR, Li Q, et al. Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator. J Mater Chem C. 2017;5(37):9778–9785.
  • Wei Y, Chen S, Yuan X, et al. Multiscale wrinkled microstructures for piezoresistive fibers. Adv Funct Mater. 2016;26(28):5078–5085.
  • Liu W, Liu N, Yue Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small. 2018;14(15):1704149.
  • Qin Z, Yin YY, Zhang WZ, et al. Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes. ACS Appl Mater Interfaces. 2019;11(13):12452–12459.
  • Jung J, Lee KM, Baeck SH, et al. Piezoresistive behavior of a stretchable carbon nanotube-interlayered poly(dimethylsiloxane) sheet with a wrinkled structure. RSC Adv. 2015;5(89):73162–73168.
  • Lipomi DJ, Vosgueritchian M, Tee BCK, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol. 2011;6(12):788–792.
  • Park SJ, Kim J, Chu M, et al. Highly flexible wrinkled carbon nanotube thin film strain sensor to monitor human movement. Adv Mater Technol. 2016;1(5):1600053.
  • Zhang CJ, Li H, Huang AM, et al. Rational design of a flexible CNTs@PDMS film patterned by bio-inspired templates as a strain sensor and supercapacitor. Small. 2019;15(18):1805493. 8,
  • Jia J, Huang GT, Deng JP, et al. Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles. Nanoscale. 2019;11(10):4258–4266.
  • Wang MT, Qiu YY, Jia J, et al. Wavelength-gradient graphene films for pressure-sensitive sensors. Adv Mater Technol. 2019;4(1):1800363.
  • Yin FX, Yang JZ, Ji PG, et al. Bioinspired pretextured reduced graphene oxide patterns with multiscale topographies for high-performance mechanosensors. ACS Appl Mater Interfaces. 2019;11(20):18645–18653.
  • Chang TH, Tian Y, Li CS, et al. Stretchable graphene pressure sensors with Shar-Pei-like hierarchical wrinkles for collision-aware surgical robotics. ACS Appl Mater Interfaces. 2019;11(10):10226–10236.
  • Chang TH, Zhang TR, Yang HT, et al. Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. Acs Nano. 2018;12(8):8048–8059.
  • Bae GY, Han JT, Lee G, et al. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv Mater. 2018;30(43):1803388. 8,
  • Li TK, Chen LL, Yang X, et al. A flexible pressure sensor based on an MXene-textile network structure. J Mater Chem C. 2019;7(4):1022–1027.
  • Sahoo BN, Woo J, Algadi H, et al. Superhydrophobic, transparent, and stretchable 3D hierarchical wrinkled film-based sensors for wearable applications. Adv Mater Technol. 2019;4(10):1900230.
  • Hui N, Chai FL, Lin PP, et al. Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors. Electrochim Acta. 2016;199:234–241.
  • Shi XL, Liu SR, Sun Y, et al. Lowering internal friction of 0D-1D-2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv Funct Mater. 2018;28(22):1800850.
  • Huang WC, Hu LP, Tang YF, et al. Recent advances in functional 2D MXene-based nanostructures for next-generation devices. Adv Funct Mater. 2020;30(49):2005223. 32,
  • Ma YN, Liu NS, Li LY, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat Commun. 2017;8(1):1207.
  • Bi LL, Yang ZL, Chen LJ, et al. Compressible AgNWs/Ti(3)C(2)T(x)MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins. J Mater Chem A. 2020;8(38):20030–20036.
  • Fu X, Wang L, Zhao L, et al. Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv Funct Mater. 2021;31(17):2010533.
  • Zhu M, Yue Y, Cheng YF, et al. Hollow MXene sphere/reduced graphene aerogel composites for piezoresistive sensor with ultra-high sensitivity. Adv Electron Mater. 2020;6(2):1901064. 9,
  • Hu XY, Dou YY, Li JJ, et al. Buckled structures: Fabrication and applications in wearable electronics. Small. 2019;15(32):1804805. 26,
  • Ruth SRA, Feig VR, Tran H, et al. Microengineering pressure sensor active layers for improved performance. Adv Funct Mater. 2020;30(38):2003491. 31,
  • Liu M, Pu X, Jiang C, et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater. 2017;29(41):1703700.
  • Liu R, Li JM, Li M, et al. MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl Mater Interfaces. 2020;12(41):46446–46454.
  • Yang Y, Luo C, Jia J, et al. A wrinkled Ag/CNTs-PDMS composite film for a high-performance flexible sensor and its applications in human-body single monitoring. Nanomaterials. 2019;9(6):850.
  • Cheng YF, Ma YA, Li LY, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. Acs Nano. 2020;14(2):2145–2155.
  • Liu Q, Chen J, Li Y, et al. High-performance strain sensors with Fish-Scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano. 2016;10(8):7901–7906.
  • Tai Y, Bera TK, Yang Z, et al. Leveraging a temperature-tunable, scale-like microstructure to produce multimodal, supersensitive sensors. Nanoscale. 2017;9(23):7888–7894.
  • Chen W, Gui X, Liang B, et al. Structural engineering for high sensitivity, ultrathin pressure sensors based on wrinkled graphene and anodic aluminum oxide membrane. ACS Appl Mater Interfaces. 2017;9(28):24111–24117.
  • Yan S, Zhang GZ, Jiang HY, et al. Highly stretchable room-temperature self-healing conductors based on wrinkled graphene films for flexible electronics. ACS Appl Mater Interfaces. 2019;11(11):10736–10744.
  • Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2TX MXene). Chem Mater. 2017;29(18):7633–7644.
  • Huang XW, Wu PY. A facile, high-yield, and freeze-and-Thaw-assisted approach to fabricate MXene with plentiful wrinkles and its application in on-chip micro-supercapacitors. Adv Funct Mater. 2020;30(12):1910048. 11,
  • Ma RZ, Sasaki T. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc Chem Res. 2015;48(1):136–143.
  • Lipatov A, Alhabeb M, Lukatskaya MR, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater. 2016;2(12):1600255. 9,
  • Sarycheva A, Makaryan T, Maleski K, et al. Two-dimensional titanium carbide (MXene) as surface-enhanced raman scattering substrate. J Phys Chem C. 2017;121(36):19983–19988.
  • Gao YY, Yan C, Huang HC, et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv Funct Mater. 2020;30(11):1909603. 8,
  • Jiang D, Zhang J, Qin S, et al. Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices. ACS Nano. 2021;15(3):5000–5010.
  • Wang DY, Wang LL, Lou Z, et al. Biomimetic, biocompatible and robust silk Fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy. 2020;78, 8:105252.
  • Wang L, Zhang MY, Yang B, et al. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. Acs Nano. 2020;14(8):10633–10647.
  • Zhuo H, Hu YJ, Chen ZH, et al. A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors. J Mater Chem A. 2019;7(14):8092–8100.
  • Wu SY, Peng SH, Han ZJ, et al. Ultrasensitive and stretchable strain sensors based on mazelike vertical graphene network. ACS Appl Mater Interfaces. 2018;10(42):36312–36322.