1,485
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of amphiphilic dumbbell-like Janus nanoparticles through one-step coupling

, , , , , & show all
Pages 175-183 | Received 14 Dec 2021, Accepted 15 Mar 2022, Published online: 22 Jul 2022

References

  • Casagrande C, Fabre P, Raphaël E, et al. Janus beads: realization and behaviour at water/oil interfaces. Europhys Lett. 1989;9(3):251–255.
  • Gennes PGd. Soft matter (nobel lecture). Rev Mod Phys. 1992;64(3):645–648.
  • Walther A, Müller AHE. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem Rev. 2013;113(7):5194–5261.
  • Yabu H. Fabrication of nanostructured composite microspheres based on the self-assembly of polymers and functional nanomaterials. Part Syst Charact. 2019;36(9):1900178.
  • Perro A, Meunier F, Schmitt V, et al. Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Colloids Surf A: Physicochem Eng Asp. 2009;332(1):57–62.
  • Zenerino A, Peyratout C, Aimable A. Synthesis of fluorinated ceramic Janus particles via a Pickering emulsion method. J Colloid Interface Sci. 2015;450:174–181.
  • Xu K, Guo R, Dong B, et al. Directed self-assembly of Janus nanorods in binary polymer mixture: towards precise control of nanorod orientation relative to interface. Soft Matter. 2012;8(37):9581–9588.
  • Yang Y, Liu Z, Wu D, et al. Edge-modified amphiphilic Laponite nano-discs for stabilizing Pickering emulsions. J Colloid Interface Sci. 2013;410:27–32.
  • Park J-G, Forster JD, Dufresne ER. High-yield synthesis of monodisperse dumbbell-shaped polymer nanoparticles. J Am Chem Soc. 2010;132(17):5960–5961.
  • Wu D, Chew JW, Honciuc A. Polarity reversal in homologous series of surfactant-free Janus nanoparticles: toward the next generation of amphiphiles. Langmuir. 2016;32(25):6376–6386.
  • Forster JD, Park J-G, Mittal M, et al. Assembly of optical-scale dumbbells into dense photonic crystals. ACS Nano. 2011;5(8):6695–6700.
  • Mo AH, Landon PB, Emerson CD, et al. Synthesis of nano-bowls with a Janus template. Nanoscale. 2015;7(2):771–775.
  • Kim S-H, Abbaspourrad A, Weitz DA. Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids. J Am Chem Soc. 2011;133(14):5516–5524.
  • Wang X, Guan B, He Y, et al. Synthesis of Janus mesoporous silica nanostructures with organic–inorganic hybrid components through a sprout-like growth method. ChemNanoMat. 2015;1(8):562–566.
  • Pfau A, Sander R, Kirsch S. Orientational ordering of structured polymeric nanoparticles at interfaces. Langmuir. 2002;18(7):2880–2887.
  • Chen MS, Goodman DW. The structure of catalytically active gold on titania. Science. 2004;306(5694):252–255.
  • Zhang J, Shao Q, Wang P, et al. Catalytic hydrogen production by Janus CuAg nanostructures. ChemNanoMat. 2018;4(5):477–481.
  • McConnell MD, Kraeutler MJ, Yang S, et al. Patchy and multiregion Janus particles with tunable optical properties. Nano Lett. 2010;10(2):603–609.
  • Yi Y, Sanchez L, Gao Y, et al. Janus particles for biological imaging and sensing. Analyst. 2016;141(12):3526–3539.
  • Shaghaghi B, Khoee S, Bonakdar S. Preparation of multifunctional Janus nanoparticles on the basis of SPIONs as targeted drug delivery system. Int J Pharm. 2019;559:1–12.
  • Wang C, Xu C, Zeng H, et al. Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv Mater. 2009;21(30):3045–3052.
  • Hong L, Jiang S, Granick S. Simple method to produce Janus colloidal particles in large quantity. Langmuir. 2006;22(23):9495–9499.
  • Aveyard R. Can Janus particles give thermodynamically stable Pickering emulsions? Soft Matter. 2012;8(19):5233–5240.
  • Kim J-W, Larsen RJ, Weitz DA. Synthesis of nonspherical colloidal particles with anisotropic properties. J Am Chem Soc. 2006;128(44):14374–14377.
  • Ji X, Zhang Y, Zhao H. Amphiphilic Janus twin single-chain nanoparticles. Chemistry. 2018;24(12):3005–3012.
  • Passas-Lagos E, SchüTh F. Amphiphilic pickering emulsifiers based on mushroom-type Janus particles. Langmuir. 2015;31(28):7749–7757.
  • Mane G, Akilavasan J, Passas-Lagos E, et al. Site-selective TiO2 coating on asymmetric patchy particles. Langmuir. 2017;33(40):10561–10567.
  • Chen T, Chen G, Xing S, et al. Scalable routes to Janus Au-SiO2 and ternary Ag-Au-SiO2 nanoparticles. Chem Mater. 2010;22(13):3826–3828.
  • Liu S, Guo S, Sun S, et al. Dumbbell-like Au-Fe3O4 nanoparticles: a new nanostructure for supercapacitors. Nanoscale. 2015;7(11):4890–4893.
  • Zeng L, Ren W, Xiang L, et al. Multifunctional Fe3O4–TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. Nanoscale. 2013;5(5):2107–2113.
  • Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968;26(1):62–69.
  • Khantan N, Shadjou N, Hasanzadeh M. Synthesize of dendritic fibrous nano-silica functionalized by cysteine and its application as advanced adsorbent. Nanocomposites. 2019;5(4):104–113.
  • Xiong L, Zheng S, Xu Z, et al. Enhanced performance of porous silicone-based dielectric elastomeric composites by low filler content of Ag@SiO2 core-shell nanoparticles. Nanocomposites. 2018;4(4):238–243.
  • Jia X, et al. Synthesis of dumbbell‑like SiO2 nanoparticles with amphiphilic properties in aqueous phase. Chin J Inorgan Chem. 2021;37(4):653–660.
  • Sbirrazzuoli N, Mititelu-Mija A, Vincent L, et al. Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures. Thermochim Acta. 2006;447(2):167–177.
  • DeCarlo PF, Slowik JG, Worsnop DR, et al. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: theory. Aerosol Sci Technol. 2004;38(12):1185–1205.
  • Briard P, Liu Z, Cai X. Measurement of the mean aspect ratio and two characteristic dimensions of polydisperse arbitrary shaped nanoparticles, using translational-rotational ultrafast image-based dynamic light scattering. Nanotechnology. 2020;31(39):395709–395717.
  • Chen Y, Briard P, Cai X. Two-dimensional particle-size measurement of nanoparticles in imagery by using dynamic light scattering. Acta Optica Sinica. 2019;39(6):0612005.
  • Correia RF, Viseu MI, Prazeres TJV, et al. Spontaneous vesicles, disks, threadlike and spherical micelles found in the solubilization of DMPC liposomes by the detergent DTAC. J Colloid Interface Sci. 2012;379(1):56–63.
  • Sate D, Janssen MHA, Stephens G, et al. Enzyme aggregation in ionic liquids studied by dynamic light scattering and small angle neutron scattering. Green Chem. 2007;9(8):859–867.
  • Pampach R, Haberkc K. Ceramic powders. Amsterdam: Elsevier Scientific Pub, 1983. p. 623–650.
  • Luo P, Nieh TG, Schwartz AJ, et al. Surface characterization of nanostructured metal and ceramic particles. Mater Sci Eng: A. 1995;204(1–2):59–64.
  • Kim J-W, Kim J-H, Deaton R. DNA-Linked nanoparticle building blocks for programmable matter. Angew Chem Int Ed Engl. 2011;50(39):9185–9190.
  • Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409–427.
  • Alexander M, Dalgleish DG. Dynamic light scattering techniques and their applications in food science. Food Biophys. 2006;1(1):2–13.