869
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Silver nanoparticles–deposited sub-micro sized BaTiO3/PVDF composites: greatly increased enhanced constant and effectively suppressed dielectric loss

& ORCID Icon
Pages 125-135 | Received 21 Mar 2022, Accepted 17 May 2022, Published online: 29 May 2022

References

  • Zhou T, Zha JW, Hou Y, et al. Surface-functionalized MWNTs with emeraldine base: preparation and improving dielectric properties of polymer nanocomposites. ACS Appl Mater Interfaces. 2011;3(12):4557–4560.
  • Guan S, Li H, Zhao S, et al. Novel three-component nanocomposites with high dielectric permittivity and low dielectric loss co-filled by carboxyl-functionalized multi-walled nanotube and BaTiO3. Compos. Sci. Technol. 2018;158:79–85.
  • Zhou W, Gong Y, Tu L, et al. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites. J. Alloys Compd. 2017;693:1–8.
  • Mao YP, Mao SY, Ye ZG, et al. Size-dependences of the dielectric and ferroelectric properties of BaTiO3/polyvinylidene fluoride nanocomposites. J. Appl. Phys. 2010;108(1):014102.
  • Yang C, Song H-S, Liu D-B. Effect of coupling agents on the dielectric properties of CaCu3Ti4O12/PVDF composites. Compos. B. Eng. 2013;50:180–186.
  • Xie Y, Yin S, Hashimoto T, et al. Sintering and dielectric properties of BaTiO3 prepared by a composite-hydroxide-mediated approach. Mater Res Bull. 2010;45(10):1345–1350.
  • Jumpatam J, Putasaeng B, Chanlek N, et al. Significantly improving the giant dielectric properties of CaCu3Ti4O12 ceramics by co-doping with Sr2+ and F- ions. Mater Res Bull. 2021;133:111043.
  • Tang H, Sodano HA. Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett. 2013;13(4):1373–1379.
  • Fan B-H, Zha J-W, Wang D, et al. Size-dependent low-frequency dielectric properties in the BaTiO3/poly(vinylidene fluoride) nanocomposite films. Appl. Phys. Lett. 2012;100(1):012903.
  • Wang Z, Wang T, Wang C, et al. Mechanism of enhanced dielectric performance in Ba(Fe 0.5 ta 0.5)O3/poly(vinylidene fluoride) nanocomposites. Ceram. Int. 2017;43:S244–S248.
  • Sun C, Deng H, Ji W, et al. The effect of multilayered film structure on the dielectric properties of composites films based on P(VDF-HFP)/Ni(OH)2. Nanocomposites. 2019;5(1):36–48.
  • Thomas P, Varughese KT, Dwarakanath K, et al. Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos Sci Technol. 2010;70(3):539–545.
  • Wang Z, Fang M, Li H, et al. Enhanced dielectric properties in poly(vinylidene fluoride) composites by nanosized Ba(Fe 0.5 Nb 0.5)O3 powders. Compos Sci Technol. 2015;117:410–416.
  • Kum-Onsa P, Chanlek N, Thongbai P. Largely enhanced dielectric properties of TiO2-nanorods/poly(vinylidene fluoride) nanocomposites driven by enhanced interfacial areas. Nanocomposites. 2021;7(1):123–131.
  • Wang L, Dang Z-M. Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl. Phys. Lett. 2005;87(4):042903.
  • Zheng W, Lu X, Wang W, et al. Fabrication of novel Ag nanowires/poly(vinylidene fluoride) nanocomposite film with high dielectric constant. Phys. stat. sol. (a). 2010;207(8):1870–1873.
  • Zhou W, Chen Q, Sui X, et al. Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites. Compos. Part A App.l Sci. Manuf. 2015;71:184–191.
  • Phromviyo N, Chanlek N, Thongbai P, et al. Enhanced dielectric permittivity with retaining low loss in poly(vinylidene fluoride) by incorporating with Ag nanoparticles synthesized via hydrothermal method. Appl. Surf. Sci. 2018;446:59–65.
  • Dang Z-M, Lin Y-H, Nan C-W. Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 2003;15(19):1625–1629.
  • Xie L, Huang X, Li BW, et al. Core-satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss. Phys Chem Chem Phys. 2013;15(40):17560–17569.
  • Su Y, Gu Y, Li H, et al. Ag-NBCTO-PVDF composites with enhanced dielectric properties. Mater. Lett. 2016;185:208–210.
  • Chen G, Lin X, Li J, et al. Core-satellite ultra-small hybrid Ni@BT nanoparticles: a new route to enhanced energy storage capability of PVDF based nanocomposites. Appl. Surf. Sci. 2020;513:145877.
  • Kum-onsa P, Phromviyo N, Thongbai P. Na1/3Ca1/3Bi1/3Cu3Ti4O12–Ni@NiO/poly(vinylidene fluoride): three–phase polymer composites with high dielectric permittivity and low loss tangent. Results Phys. 2020;18:103312.
  • Shri Prakash B, Varma KBR. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites. Compos Sci Technol. 2007;67(11–12):2363–2368.
  • Gong L, Chen S-H, Zhan S-P, et al. An enhancement on the dielectric performance of poly(vinylidene fluoride)-based composite with graphene oxide-BaTiO 3 hybrid. Nanocomposites. 2019;5(2):61–66.
  • Prateek D, Singh N, Singh AG, et al. Engineered thiol anchored Au-BaTiO3/PVDF polymer nanocomposite as efficient dielectric for electronic applications. Compos. Sci. Technol. 2019;174:158–168.
  • Luo S, Yu S, Sun R, et al. Nano Ag-Deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Appl. Mater. Interfaces. 2014;6(1):176–182.
  • Fang F, Yang W, Yu S, et al. Mechanism of high dielectric performance of polymer composites induced by BaTiO3-supporting Ag hybrid fillers. Appl. Phys. Lett. 2014;104(13):132909.
  • Silakaew K, Chanlek N, Manyam J, et al. Highly enhanced frequency- and temperature-stability permittivity of three-phase poly(vinylidene-fluoride) nanocomposites with retaining low loss tangent and high permittivity. Results Phys. 2021;26:104410, 104410.
  • Fan B-H, Zha J-W, Wang D-R, et al. Preparation and dielectric behaviors of thermoplastic and thermosetting polymer nanocomposite films containing BaTiO3 nanoparticles with different diameters. Compos Sci Technol. 2013;80:66–72.
  • Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014;39(4):683–706.
  • Cai X, Lei T, Sun D, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7(25):15382–15389.
  • Xia W, Zhang Z. PVDF‐based dielectric polymers and their applications in electronic materials. IET Nanodielectr. 2018;1(1):17–31.
  • Thakur P, Kool A, Hoque NA, et al. Improving the thermal stability, electroactive β phase crystallization and dielectric constant of NiO nanoparticle/C–NiO nanocomposite embedded flexible poly(vinylidene fluoride) thin films. RSC Adv. 2016;6(31):26288–26299.
  • Kum-onsa P, Phromviyo N, Thongbai P. Suppressing loss tangent with significantly enhanced dielectric permittivity of poly(vinylidene fluoride) by filling with Au-Na1/2Y1/2Cu3Ti4O12 hybrid particles. RSC Adv. 2020;10(66):40442–40449.
  • Dang Z-M, Xu H-P, Wang H-Y. Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. Appl. Phys. Lett. 2007;90(1):012901.
  • Fu J, Hou Y, Wei Q, et al. Advanced FeTiNbO 6 /poly(vinylidene fluoride) composites with a high dielectric permittivity near the percolation threshold. J. Appl. Phys. 2015;118(23):235502.
  • Meeporn K, Thongbai P, Yamwong T, et al. Greatly enhanced dielectric permittivity in La1.7 Sr0.3 NiO4 /poly(vinylidene fluoride) nanocomposites that retained a low loss tangent. RSC Adv. 2017;7(28):17128–17136.
  • Silakaew K, Saijingwong W, Meeporn K, et al. Microelectron. Eng. 2015;146(Suppl. C):1–5.
  • Su Y, Gu Y, Feng S. Composites of NBCTO/MWCNTs/PVDF with high dielectric permittivity and low dielectric loss. J Mater Sci: Mater Electron. 2018;29(3):2416–2420.
  • Pan Z, Yao L, Zhai J, et al. Significantly improved dielectric properties and energy density of polymer nanocomposites via small loaded of BaTiO3 nanotubes. Compos. Sci. Technol. 2017;147:30–38.
  • Zhou W, Kou Y, Yuan M, et al. Polymer composites filled with core@double-shell structured fillers: Effects of multiple shells on dielectric and thermal properties. Compos. Sci. Technol. 2019;181:107686.
  • Lu X, Zou X, Shen J, et al. Characterizations of P(VDF-HFP)-BaTiO3 nanocomposite films fabricated by a spin-coating process. Ceram. Int. 2019;45(14):17758–17766.
  • Yang W, Yu S, Sun R, et al. Electrical modulus analysis on the Ni/CCTO/PVDF system near the percolation threshold. J. Phys. D: Appl. Phys. 2011;44(47):475305.