1,347
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Multiscale hybrid CNT and CF reinforced PEEK composites with enhanced EMI properties

, ORCID Icon, , &
Pages 184-193 | Received 28 Feb 2022, Accepted 07 Jul 2022, Published online: 05 Aug 2022

References

  • Chung DDL, Eddib AA. Effect of fiber lay-up configuration on the electromagnetic interference shielding effectiveness of continuous carbon fiber polymer-matrix composite. Carbon. 2019;141:685–691. doi:10.1016/j.carbon.2018.09.081.
  • Li J, Peng W-J, Fu Z-J, et al. Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly(lactic acid)/silver nanocomposites by constructing large-area silver nanoplates in polymer matrix. Compos Part B: Eng. 2019;171:204–213. doi:https://doi.org/10.1016/j.compositesb.2019.05.003.
  • Sharika T, Abraham J, Arif P M, et al. Excellent electromagnetic shield derived from MWCNT reinforced NR/PP blend nanocomposites with tailored microstructural properties. Compos Part B: Eng. 2019;173:106798. doi:https://doi.org/10.1016/j.compositesb.2019.05.009.
  • Huynen I, Quiévy N, Bailly C, et al. Multifunctional hybrids for electromagnetic absorption. Acta Mater. 2011;59(8):3255–3266. doi:https://doi.org/10.1016/j.actamat.2011.01.065.
  • Gupta S, Tai N-H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon. 2019;152:159–187. doi:https://doi.org/10.1016/j.carbon.2019.06.002.doi:10.1016/j.carbon.2019.06.002.
  • Shukla V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019;1(5):1640–1671.doi:https://doi.org/10.1039/c9na00108e.
  • Abbasi H, Antunes M, Velasco JI. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress Mater Sci. 2019;103:319–373. doi:https://doi.org/10.1016/j.pmatsci.2019.02.003.
  • Li H, Lu X, Yuan D, et al. Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. J Mater Chem C. 2017;5(34):8694–8698. doi:https://doi.org/10.1039/c7tc02394d.
  • Shajari S, Arjmand M, Pawar SP, et al. Synergistic effect of hybrid stainless steel fiber and carbon nanotube on mechanical properties and electromagnetic interference shielding of polypropylene nanocomposites. Compos Part B: Eng. 2019;165:662–670. doi:https://doi.org/10.1016/j.compositesb.2019.02.044.
  • Zhang H, Zhang G, Tang M, et al. Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem Eng J. 2018;353:381–393. doi:https://doi.org/10.1016/j.cej.2018.07.144.
  • Qian K, Zhou Q, Wu H, et al. Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos Part A-Appl S. 2021;141:106229. doi:https://doi.org/10.1016/j.compositesa.2020.106229.
  • Song P, Qiu H, Wang L, et al. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain Mater Technol. 2020;24:e00153. doi:https://doi.org/10.1016/j.susmat.2020.e00153.
  • Dong M, Zhang H, Tzounis L, et al. Multifunctional epoxy nanocomposites reinforced by two-dimensional materials: a review. Carbon. 2021;185:57–81. doi:https://doi.org/10.1016/j.carbon.2021.09.009.
  • Gupta A, Varshney S, Goyal A, et al. Enhanced electromagnetic shielding behaviour of multilayer graphene anchored luminescent TiO2 in PPY matrix. Mater Lett. 2015;158:167–169. doi:https://doi.org/10.1016/j.matlet.2015.05.154.
  • Li S, Li W, Nie J, et al. Synergistic effect of graphene nanoplate and carbonized loofah fiber on the electromagnetic shielding effectiveness of PEEK-based composites. Carbon. 2019;143:154–161. doi:https://doi.org/10.1016/j.carbon.2018.11.015.
  • Jiang B, Luan J, Qin S, et al. Fabrication of very effective ferroferric oxide and multiwalled carbon nanotubes@polyetherimide/poly(ether ether ketone) electromagnetic interference shielding composites. Polym Compos. 2020;41(8):3135–3143. doi:https://doi.org/10.1002/pc.25604.
  • Chen Y, Zhang H-B, Wang M, et al. Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances. Compos Sci Technol. 2017;152:254–262. doi:https://doi.org/10.1016/j.compscitech.2017.09.022.
  • Na R, Liu J, Wang G, et al. Light weight and flexible poly(ether ether ketone) based composite film with excellent thermal stability and mechanical properties for wide-band electromagnetic interference shielding. RSC Adv. 2018;8(6):3296–3303.doi:https://doi.org/10.1039/C7RA11675F.
  • Wang H, Wang G, Li W, et al. A material with high electromagnetic radiation shielding effectiveness fabricated using multi-walled carbon nanotubes wrapped with poly(ether sulfone) in a poly(ether ether ketone) matrix. J Mater Chem. 2012;22(39):21232–21237. doi:https://doi.org/10.1039/C2JM35129C.
  • Su Y, Zhou F, Wei X, et al. Enhanced mechanical and electrical properties of carbon fiber/poly(ether ether ketone) laminates via inserting carbon nanotubes interleaves. J Appl Polym Sci. 2020;137(19):48658.doi:https://doi.org/10.1002/app.48658.
  • Yang Y, Gupta MC, Dudley KL, et al. The fabrication and electrical properties of carbon nanofibre– polystyrene composites. Nanotechnology. 2004;15(11):1545–1548. doi:https://doi.org/10.1088/0957-4484/15/11/030.
  • Papageorgiou DG, Kinloch IA, Young RJ. Mechanical properties of graphene and graphene-based nanocomposites. Progress Mater Sci. 2017;90:75–127. doi:https://doi.org/10.1016/j.pmatsci.2017.07.004.
  • Kepple KL, Sanborn GP, Lacasse PA, et al. Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon. 2008;46(15):2026–2033. doi:https://doi.org/10.1016/j.carbon.2008.08.010.
  • Veedu VP, Cao A, Li X, et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat Mater. 2006;5(6):457–462. doi:https://doi.org/10.1038/nmat1650.
  • Yang K, Mei H, Han D, et al. Enhanced electromagnetic shielding property of C/SiC composites via electrophoretically-deposited CNTs onto SiC coating. Ceram Int. 2018;44(16):20187–20191. doi:https://doi.org/10.1016/j.ceramint.2018.08.001.
  • Yang L, Zheng W, Zhang P, et al. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J Electroanal Chem. 2018;830-831:1–6. doi:https://doi.org/10.1016/j.jelechem.2018.10.024.
  • Su YN, Zhang SC, Zhang XH, et al. Preparation and properties of carbon nanotubes/carbon fiber/poly (ether ether ketone) multiscale composites. Compos Part A-Appl S. 2018;108:89–98. doi:https://doi.org/10.1016/j.compositesa.2018.02.030.
  • Zhang H, Liu Y, Kuwata M, et al. Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos Part A-Appl S. 2015;70:102–110. doi:https://doi.org/10.1016/j.compositesa.2014.11.029.
  • Gong S, Zhu ZH, Arjmand M, et al. Effect of carbon nanotubes on electromagnetic interference shielding of carbon fiber reinforced polymer composites. Polym Compos. 2018;39(S2):E655–E663. doi:https://doi.org/10.1002/pc.24084.
  • Li Y, Zhang H, Liu Y, et al. Synergistic effects of spray-coated hybrid carbon nanoparticles for enhanced electrical and thermal surface conductivity of CFRP laminates. Compos Part A-Appl S. 2018;105:9–18. doi:https://doi.org/10.1016/j.compositesa.2017.10.032.
  • Lee S-H, Kang D, Oh I-K. Multilayered graphene-carbon nanotube-iron oxide three-dimensional heterostructure for flexible electromagnetic interference shielding film. Carbon. 2017;111:248–257. doi:https://doi.org/10.1016/j.carbon.2016.10.003.
  • Rohini R, Verma K, Bose S. Interfacial architecture constructed using functionalized MWNT resulting in enhanced EMI shielding in epoxy/carbon fiber composites. ACS Omega. 2018;3(4):3974–3982. doi:https://doi.org/10.1021/acsomega.8b00218.
  • Li S, Jin Y, Wang Z, et al. Preparation and characterisation of nickel-plated carbon fibre/polyether ether ketone composites with high electromagnetic shielding and high thermal conductivity. Colloid Polym Sci. 2019;297(7-8):967–977. doi:https://doi.org/10.1007/s00396-019-04522-5.
  • Chauhan SS, Verma P, Malik RS, et al. Thermomechanically stable dielectric composites based on poly(ether ketone) and BaTiO3 with improved electromagnetic shielding properties in X-band. J Appl Polym Sci. 2018;135(26):46413. doi:https://doi.org/10.1002/app.46413.
  • Yang YL, Gupta MC, Dudley KL, et al. A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol. 2005;5(6):927–931. doi:https://doi.org/10.1166/jnn.2005.115.
  • Singh BP, Choudhary V, Saini P, et al. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding. AIP Adv. 2012;2(2):022151. doi:https://doi.org/10.1063/1.4730043.
  • Afaghi-Khatibi A, Mai Y-W. Characterisation of fibre/matrix interfacial degradation under cyclic fatigue loading using dynamic mechanical analysis. Compos Part A-Appl S. 2002;33(11):1585–1592. doi:https://doi.org/10.1016/S1359-835X(02)00117-3.
  • Keusch S, Haessler R. Influence of surface treatment of glass fibres on the dynamic mechanical properties of epoxy resin composites. Compos Part A-Appl S. 1999;30(8):997–1002. doi:https://doi.org/10.1016/s1359-835x(99)00007-x.
  • Chen J, Wang K, Zhao Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface. Compos Sci Technol. 2018;154:175–186. doi:https://doi.org/10.1016/j.compscitech.2017.11.005.