846
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Flower-like and nanorods ZnO deposited on rGO as efficient photocatalysts for removal of polychlorinated biphenyls (PCBs)

, , , &
Pages 204-214 | Received 22 Jul 2022, Accepted 27 Nov 2022, Published online: 23 Jan 2023

References

  • Prasad C, et al. An overview of graphene oxide supported semiconductors based photocatalysts: properties, synthesis and photocatalytic applications. J Mol Liq. 2020;297:111826.
  • Albiter E, Merlano AS, Rojas E, et al. Synthesis, characterization, and photocatalytic performance of ZnO – graphene nanocomposites : a review. J Compos Sci. 2021;5(4):1–40.
  • Lee KM, Lai CW, Ngai KS, et al. Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 2016;88:428–448.
  • Raizada P, Sudhaik A, Singh P. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater Sci Energy Technol. 2019;2(3):509–525.
  • El A, Fendrich M, Bazzanella N, et al. Wastewater remediation with ZnO photocatalysts : green synthesis and solar concentration as an economically and environmentally viable route to application. J Environ Manage. 2021;286(February):112226.
  • He Y, Wang Y, Zhang L, et al. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl Catal B Environ. 2015;168–169:1–8.
  • Li X, Wang J, Zhang J, et al. Cadmium sulfide modified zinc oxide heterojunction harvesting ultrasonic mechanical energy for efficient decomposition of dye wastewater. J Colloid Interface Sci. 2022;607:412–422.
  • Zheng S, Li X, Zhang J, et al. One-step preparation of MoOx/ZnS/ZnO composite and its excellent performance in piezocatalytic degradation of rhodamine B under ultrasonic vibration. J Environ Sci (China). 2023 Mar;125:1–13.
  • Pandey N, Shukla SK, Singh NB. Water purification by polymer nanocomposites: an overview. Nanocomposites. 2017;3(2):47–66.
  • Alqarni SA. Deliberated system of ternary core–shell polythiophene/ZnO/MWCNTs and polythiophene/ZnO/ox-MWCNTs nanocomposites for brilliant green dye removal from aqueous solutions. Nanocomposites. 2022;8(1):47–63.
  • Wojnarowicz J, Chudoba T, Lojkowski W. A Review of microwave synthesis of zinc oxide nanomaterials: reactants, process parameters and morphologies. Nanomaterials. 2020;10:1086.
  • Samadi M, Zirak M, Naseri A, et al. Design and tailoring of one-dimensional ZnO nanomaterials for photocatalytic degradation of organic dyes: a review. Res Chem Intermed. 2019;45(4):2197–2254.
  • Das A, S.k N, Nair RG. Influence of surface morphology on photocatalytic performance of zinc oxide: a review. Nano-Struct Nano-Objects. 2019;19:100353.
  • Munawar A, Akram MS, Javed MT, et al. Polychlorinated biphenyls (PCBs): characteristics, toxicity, phytoremediation, and use of transgenic plants for PCBs degradation. In: Hasanuzzaman M, Prasad MNV, editors. Handbook of bioremediation. Bangladesh and India: Elsevier Inc., 2021. pp. 677–687.
  • United States Environmental Protection Agency. Polychlorinated biphenyls (PCBs). https://www.epa.gov/pcbs
  • Shaban YA, El Sayed MA, El Maradny AA, et al. Photocatalytic removal of polychlorinated biphenyls (PCBs) using carbon-modified titanium oxide nanoparticles. Appl Surf Sci. 2016;365(August):108–113.
  • Zheng C, Zhao L, Zhou X, et al. Treatment Technologies for organic wastewater. In: Elshorbagy W, Chowdhury RK, editors. Water treatment. United Arab Emirates; 2013. p. 38.
  • OHA. Polychlorinated biphenyls (PCBs) and drinking water. 2015.
  • Ministerio de Ambiente y Desarrollo Sostenible de Colombia. Generalidades y conceptos básicos sobre bifenilos policlorados – PCB. In: Manual Para la Gestión Integral de Bifenilos Policlorados - PCB, no. 1, 2015, p. 48.
  • Kim K, Son SH, Kim KS, et al. Environmental effects of supercritical water oxidation (SCWO) process for treating transformer oil contaminated with polychlorinated biphenyls (PCBs). Chem Eng J. 2010;165(1):170–174.
  • Jing R, Fusi S, Kjellerup BV. Remediation of polychlorinated biphenyls (PCBs) in contaminated soils and sediment: state of knowledge and perspectives. Front Environ Sci. 2018;6:1–17.
  • Passatore L, Rossetti S, Juwarkar AA, et al. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater. 2014;278:189–202.
  • Bako CM, Mattes TE, Marek RF, et al. Biodegradation of PCB congeners by Paraburkholderia xenovorans LB400 in presence and absence of sediment during lab bioreactor experiments. Environ Pollut. 2021;271:116364.
  • Sadañoski MA, et al. Evaluation of bioremediation strategies for treating recalcitrant halo-organic pollutants in soil environments. Ecotoxicol Environ Saf. 2020;202:110929.
  • Kim K, Kim K, Son SH, et al. Supercritical water oxidation of transformer oil contaminated with PCBs - a road to commercial plant from bench-scale facility. J Supercrit Fluids. 2011;58(1):121–130.
  • Cerasa M, et al. Validation studies on activated carbon fiber passive sampler for PCDD/Fs and PCBs in water. Chemosphere. 2020;239:124666.
  • Gomez-Eyles JL, Ghosh U. Enhanced biochars can match activated carbon performance in sediments with high native bioavailability and low final porewater PCB concentrations. Chemosphere. 2018;203:179–187.
  • Merlano AS, Hoyos LM, Gutiérrez GJ, et al. Effect of Zn precursor concentration in the synthesis of rGO/ZnO composites and their photocatalytic activity. New J Chem. 2020;44(45):19858–19867.
  • Merlano AS, Salazar Á. A facile microwave-assisted synthesis of ZnO nanoparticles and their photocatalytic activity : effect of pH. BISTUA Rev Facultad Cienc Básicas. 2020;18(2):3–8.
  • Gómez I, Mejía E, Cabanzo R. Synthesis of graphene oxide and chemically reduced graphene nanosheets. Rev Colomb Mater. 2013;5:177–184.
  • Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4(8):4806–4814.
  • Rashidi H, Ahmadpour A, Bamoharram FF, et al. Controllable one-step synthesis of ZnO nanostructures using molybdophosphoric acid. Chem Pap. 2014;68(4):516–524.
  • Meti S, Rahman MR, Ahmad MI, et al. Chemical free synthesis of graphene oxide in the preparation of reduced graphene oxide-zinc oxide nanocomposite with improved photocatalytic properties. Appl Surf Sci. 2018;451:67–75.
  • Ding J, Zhu S, Zhu T, et al. Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor. RSC Adv. 2015;5:22935–22942.
  • Bindu P, Thomas S. Estimation of lattice strain in ZnO nanoparticles: X -ray peak profile analysis. J Theor Appl Phys. 2014;8(4):123–134.
  • Diallo A, Ngom BD, Park E, et al. Green synthesis of ZnO nanoparticles by aspalathus linearis: structural & optical properties. J Alloys Compd. 2015;646(January):425–430.
  • Katiyar RS, Samanta K. Structural and optical properties of Zn1-xCuxO thin films. In: Feng ZC, editor. Handbook of zinc oxide and related materials: volume one, materials. Vol. 1; Boca Raton: CRC Press; 2012. p. 351–372.
  • Hernández RFG. Eficiencia de sistemas avanzados de oxidación acoplados para la degradación de bifenilos policlorados. 2012.
  • Zhu X, Wang Y, Qin W, et al. Distribution of free radicals and intermediates during the photodegradation of polychlorinated biphenyls strongly affected by cosolvents and TiO2 catalyst. Chemosphere. 2016;144:628–634.
  • Lin Y, Gupta G, Baker J. Photodegradation of aroclor 1254 using simulated sunlight and various sensitizers. Bull Environ Contam Toxicol. 1996;56(4):566–570.
  • Zhou Z, Zhang Y, Wang H, et al. The comparative photodegradation activities of pentachlorophenol (PCP) and polychlorinated biphenyls (PCBs) using UV alone and TiO2-derived photocatalysts in methanol soil washing solution. PLoS One. 2014;9(9):1–8.
  • Almeida P G, Fernández L, Castro R, et al. Degradación fotocatalítica de aroclor 1254 utilizando dióxido de titanio irradiado con haz de electrones acelerados. Infoanalítica. 2019;7(2):111–124.
  • Nadarajan R, Bakar WAWA, Ali R, et al. Method for polychlorinated biphenyls removal from mussels and its photocatalytic dechlorination. Appl Catal B Environ. 2017;218:327–337.
  • Huang Q, Hong CS. TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant. Chemosphere. 2000;41(6):871–879.
  • Dasary SSR, Saloni J, Fletcher A, et al. Photodegradation of selected PCBs in the presence of Nano-TiO2 as catalyst and H2O2 as an oxidant. Int J Environ Res Public Health. 2010;7(11):3987–4001.
  • Li X, Yu J, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev. 2019;119(6):3962–4179.
  • Xin ML, Yang JW, Li Y. The mechanism for enhanced oxidation degradation of dioxin-like PCBs (PCB-77) in the atmosphere by the solvation effect. Chem Cent J. 2017;11(1):1–14.
  • Herrmann JM. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today. 1999;53(1):115–129.
  • Sedlak DL, Andren AW. Aqueous-phase oxidation of polychlorinated biphenyls by hydroxyl radicals. Environ Sci Technol. 1991;25(8):1419–1427.
  • Huang C, Zeng Y, Luo X, et al. Comprehensive exploration of the ultraviolet degradation of polychlorinated biphenyls in different media. Sci Total Environ. 2021;755:142590.
  • Sun Y, Liu X, Kainuma M, et al. Dechlorination of polychlorinated biphenyls by iron and its oxides. Chemosphere. 2015;137:78986.
  • Sun Y, Takaoka M, Takeda N, et al. Decomposition of 2,2’,4,4’,5,5’-hexachlorobiphenyl with iron supported on an activated carbon from an ion-exchange resin. Chemosphere. 2012;88(7):895–902.
  • DeVor R, Carvalho-Knighton K, Aitken B, et al. Mechanism of the degradation of individual PCB congeners using mechanically alloyed Mg/Pd in methanol. Chemosphere. 2009;76(6):761–766.