1,001
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical and analytical modelling of effective thermal conductivity of multi-walled carbon nanotubes polymer nanocomposites including the effect of nanotube orientation and interfacial thermal resistance

, &
Pages 30-42 | Received 21 Feb 2023, Accepted 20 May 2023, Published online: 06 Jun 2023

References

  • Lee D, Lee S, Byun S, et al. Novel dielectric BN/epoxy nanocomposites with enhanced heat dissipation performance for electronic packaging. Compos. Part A Appl. Sci. Manuf. 2018;107(vember 2017):217–223.
  • Chen C, Xue Y, Li X, et al. High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. Compos. Part A Appl. Sci. Manuf. 2019;118:67–74.
  • Zhang L, Zhang X, Hua W, et al. Epoxy resin-hydrated halt shaped composite thermal control packaging material for thermal management of electronic components. J. Clean. Prod. 2022;363:132369.
  • Chen C, Wang H, Xue Y, et al. Structure, rheological, thermal conductive and electrical insulating properties of high-performance hybrid epoxy/nanosilica/AgNWs nanocomposites. Compos. Sci. Technol. 2016;128:207–214.
  • Morishita T, Katagiri Y, Matsunaga T, et al. Design and fabrication of morphologically controlled carbon nanotube/polyamide-6-based composites as electrically insulating materials having enhanced thermal conductivity and elastic modulus. Compos. Sci. Technol. 2017;142:41–49.
  • Morishita T, Matsushita M, Katagiri Y, et al. A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation. J. Mater. Chem. 2011;21(15):5610–5614.
  • Cui W, Du F, Zhao J, et al. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon N. Y. 2011;49(2):495–500.
  • Yang W, Wang Y, Li Y, et al. Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Compos. Part B Eng. 2021;224:109168.
  • Zhan H, Zhang G, Zhuang X, et al. Low interfacial thermal resistance between crossed ultra-thin carbon nanothreads. Carbon N. Y. 2020;165:216–224.
  • Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 2011;36(7):914–944.
  • Pak SY, Kim SY, Lee D, et al. Micro-Macroscopic coupled modeling for the prediction of synergistic improvement on the thermal conductivity of boron nitride and multi-walled carbon nanotube reinforced composites. Compos. Part A Appl. Sci. Manuf. 2021;148:106474.
  • Mahdavi M, Yousefi E, Baniassadi M, et al. Effective thermal and mechanical properties of short carbon fiber/natural rubber composites as a function of mechanical loading. Appl. Therm. Eng. 2017;117:8–16.
  • Hassanzadeh-Aghdam MK, Mahmoodi MJ, Ansari R. Creep performance of CNT polymer nanocomposites – An emphasis on viscoelastic interphase and CNT agglomeration. Compos. Part B Eng. 2019;168:274–281.
  • Haghgoo M, Ansari R, Hassanzadeh-Aghdam MK. The effect of nanoparticle conglomeration on the overall conductivity of nanocomposites. Int. J. Eng. Sci. 2020;157:103392.
  • Madaleno L, Schjødt-Thomsen J, Pinto JC. Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding. Compos. Sci. Technol. 2010;70(5):804–814.
  • Hida S, Hori T, Shiga T, et al. Thermal resistance and phonon scattering at the interface between carbon nanotube and amorphous polyethylene. Int. J. Heat Mass Transf. 2013;67:1024–1029.
  • Yu J, Lacy TE, Toghiani H, et al. Micromechanically-based effective thermal conductivity estimates for polymer nanocomposites. Compos. Part B Eng. 2013;53:267–273.
  • Kim HS, Jang JU, Yu J, et al. Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Compos. Part B Eng. 2015;79:505–512.
  • Bui K, Grady BP, Papavassiliou DV. Heat transfer in high volume fraction CNT nanocomposites: effects of inter-nanotube thermal resistance. Chem. Phys. Lett. 2011;508(4–6):248–251.
  • Hassanzadeh-Aghdam MK, Mahmoodi MJ. Materials science & engineering B micromechanical modeling of thermal conducting behavior of general carbon nanotube-polymer nanocomposites. Mater. Sci. Eng. B. 2018;229:173–183.
  • Zhong H, Lukes JR. Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B. 2006;74(12):1–10.
  • Liu L, Zhang Z, Gou X. Thermal conductivity of aligned CNT-polyethylene nanocomposites and correlation with the interfacial thermal resistance. Polym. Compos. 2020;41(9):3787–3797.
  • Huxtable ST, Cahill DG, Shenogin S, et al. Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2003;2(11):731–734.
  • Clancy TC, Gates TS. Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer (Guildf). 2006;47(16):5990–5996.
  • Gary DCL, Seidel D. A micromechanics model for the thermal conductivity of nanotube-polymer nanocomposites. J. Appl. Mech. 2008;75:1–9.
  • Lee S, Lee J, Ryu B, et al. A micromechanics-based analytical solution for the effective thermal conductivity of composites with orthotropic matrices and interfacial thermal resistance. Sci Rep. 2018;8(1):1–11. pp.
  • Böhm HJ, Nogales S. Mori-Tanaka models for the thermal conductivity of composites with interfacial resistance and particle size distributions. Compos. Sci. Technol. 2008;68(5):1181–1187.
  • Gu ST, Wang AL, Xu Y, et al. Closed-form estimates for the effective conductivity of isotropic composites with spherical particles and general imperfect interfaces. Int. J. Heat Mass Transf. 2015;83:317–326.
  • Alvarez-Guerrero S, Ordonez-Miranda J, de Coss R, et al. Determination of the effective thermal conductivity of particulate composites based on VO2 and SiO2. Int. J. Therm. Sci. 2022;172(PA):107278.
  • Stránský J, Vorel J, Zeman J, et al. Mori-tanaka based estimates of effective thermal conductivity of various engineering materials. Micromachines. 2011;2(2):129–149.
  • Kumar S, Singh A, Tiwari M. MWCNTs polymer nanocomposite with enhanced thermomechanical properties and electrical insulation for effective encapsulation. Mater. Res. Express. 2023;10(2):025003.
  • Kim SY, Noh YJ, Yu J. Improved thermal conductivity of polymeric composites fabricated by solvent-free processing for the enhanced dispersion of nanofillers and a theoretical approach for composites containing multiple heterogeneities and geometrized nanofillers. Compos. Sci. Technol. 2014;101:79–85.
  • Su Y, Li JJ, Weng GJ. Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial kapitza resistance and graphene-graphene contact resistance. Carbon N. Y. 2018;137:222–233.
  • Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973;21(5):571–574.
  • Benveniste Y. A new approach to the application of Mori-Tanaka’s theory in composite materials. Mech. Mater. 1987;6(2):147–157.
  • You A, et al. Effective thermal conductivity of a misoriented short fiber composite development of JT coolers operating at cryogenic temperatures with t. 2011;2478–2486.
  • Chen CH, Wang YC. Effective thermal conductivity of misoriented short-fiber reinforced thermoplastics. Mech. Mater. 1996;23(3):217–228.
  • He B, Mortazavi B, Zhuang X, et al. Modeling kapitza resistance of two-phase composite material. Compos. Struct. 2016;152:939–946.
  • Hiroshi H, Minoru T. Equivalent inclusion method for steady state heat conduction in composites. Int. J. Eng. Sci. 1986;24(7):1159–1172.
  • Ding D, Huang R, Wang X, et al. Thermally conductive silicone rubber composites with vertically oriented carbon fibers: a new perspective on the heat conduction mechanism. Chem. Eng. J. 2022;441:136104.
  • Sun Y, Zhou L, Han Y, et al. A new anisotropic thermal conductivity equation for h-BN/polymer composites using finite element analysis. Int. J. Heat Mass Transf. 2020;160:120157.
  • Pan D, Li Q, Zhang W, et al. Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. No. Compos. Part B Eng. 2021;209:108609.
  • Hedayati H, Sobhani Aragh B. Influence of graded agglomerated CNTs on vibration of CNT-reinforced annular sectorial plates resting on pasternak foundation. Appl. Math. Comput. 2012;218(17):8715–8735.
  • Mora A, Verma P, Kumar S. Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling. Compos. Part B Eng. 2020;183:107600.
  • Hassanzadeh-Aghdam MK, Mahmoodi MJ, Jamali J, et al. A new micromechanical method for the analysis of thermal conductivities of unidirectional fiber/CNT-reinforced polymer hybrid nanocomposites. Compos. Part B Eng. 2019;175:107137.
  • Marconnet AM, Yamamoto N, Panzer MA, et al. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano. 2011;5(6):4818–4825.
  • Goh PS, Ismail AF, Ng BC. Directional alignment of carbon nanotubes in polymer matrices: contemporary approaches and future advances. Compos. Part A Appl. Sci. Manuf. 2014;56:103–126.
  • Gao M, Yang B, Huang Y, et al. Effects of general imperfect interface/interphase on the in-plane conductivity of thermal composites. Int. J. Heat Mass Transf. 2021;172:121213.
  • Huang C, Qian X, Yang R. Thermal conductivity of polymers and polymer nanocomposites. Mater. Sci. Eng. R Reports. 2018;132:1–22.