864
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of variations in Ni-W molar ratio on the microstructure, mechanical properties and tribology of electrodeposited Ni-W/diamond composite coatings

, &
Pages 50-67 | Received 13 Mar 2023, Accepted 20 Jun 2023, Published online: 10 Jul 2023

References

  • Kim J-H, Lim J-H, Lee W-T, et al. Microstructures and mechanical behavior of Ti-(38 + x)Ni-12Cu (at%) (x = 0 ∼ 3) alloys. J Alloys Compd. 2023;938:168664. doi: 10.1016/j.jallcom.2022.168664.
  • Zhou A, Liu X-B, Wang Q, et al. Investigation of nano-tribological behaviors and deformation mechanisms of Cu-Ni alloy by molecular dynamics simulation. Tribol Int. 2023;180:108258. doi: 10.1016/j.triboint.2023.108258.
  • Yang Z, Zhang M, Fan L, et al. Towards high mechanical performance Al–Cu–Mg–Fe–Ni alloy: influence of composition, solution treatment and aged process on microstructural evolution and mechanical properties. J Mater Res Technol. 2023;23:2054–2064. doi: 10.1016/j.jmrt.2023.01.166.
  • Dai C, Wang J, Pan Y, et al. Tailoring the microstructural characteristic and improving the corrosion rate of Mg-Gd-Ni alloy by heat treatment with different volume fraction of LPSO phase. Corros Sci. 2023;210:110806. doi: 10.1016/j.corsci.2022.110806.
  • Li C, Xia F, Yao L, et al. Investigation of the mechanical properties and corrosion behaviors of Ni-BN-TiC layers constructed via laser cladding technique. Ceram Int. 2023;49(4):6671–6677. doi: 10.1016/j.ceramint.2022.10.104.
  • Li C, Xia F, Ma C, et al. Research on the corrosion behavior of Ni-SiC nanocoating prepared using a jet electrodeposition technique. J of Materi Eng and Perform. 2021;30(8):6336–6344. doi: 10.1007/s11665-021-05891-1.
  • Ma C, Wu F, Ning Y, et al. Effect of heat treatment on structures and corrosion characteristics of electroless Ni–P–SiC nanocomposite coatings. Ceram Int. 2014;40(7):9279–9284. doi: 10.1016/j.ceramint.2014.01.150.
  • Park J-H, Hagio T, Ichino R. Improvement in the corrosion resistance of electrodeposited Ni-W alloy by MWCNT co-deposition and prevention of metal-carbon interfacial corrosion by carbide formation. J Alloys Compd. 2023;939:168788. doi: 10.1016/j.jallcom.2023.168788.
  • Hou Z, Nie Z, Liu Z, et al. Enhanced mechanical properties of a Ni–W–Al alloy in the as-cast state. Materials Science and Engineering: a. 2023;866:144686. doi: 10.1016/j.msea.2023.144686.
  • Ye M-C, Ding T-T, Zhou H, et al. Nucleation and growth mechanism of electrodeposited Ni − W alloy. Trans Nonferrous Met Soc China. 2021;31(6):1842–1852. doi: 10.1016/S1003-6326(21)65621-2.
  • Zhong Q, Wei K, Yue X, et al. Powder densification behavior and microstructure formation mechanism of W-Ni alloy processed by selective laser melting. J Alloys Compd. 2022;908:164609. doi: 10.1016/j.jallcom.2022.164609.
  • Ramaprakash M, Deepika Y, Balamurugan C, et al. Pulse electrodeposition of nano-crystalline Ni-W alloy and the influence of tungsten composition on structure, microhardness and corrosion properties. J Alloys Compd. 2021;866:158987. doi: 10.1016/j.jallcom.2021.158987.
  • Hu J, Zhu Z, Zhu D, et al. Synthesis mechanism of Ni–Co alloy uniting ultrahigh strength with tensile ductility via abrasive-assisted electroforming. Materials Science and Engineering: a. 2022;861:144375. doi: 10.1016/j.msea.2022.144375.
  • Matsumoto K, Tachikawa Y, Lyth SM, et al. Performance and durability of Ni–Co alloy cermet anodes for solid oxide fuel cells. Int J Hydrogen Energy. 2022;47(68):29441–29455. doi: 10.1016/j.ijhydene.2022.06.268.
  • Man T, Hu C, Lu H, et al. Effect of annealing temperature on microstructure and hardness of Ni-Co alloy coating. Mater Today Commun. 2022;31:103244. doi: 10.1016/j.mtcomm.2022.103244.
  • Kada SR, Vaucorbeil A D, Fabijanic D, et al. Work hardening and the scratch resistance of Ni–Co alloys using a rapid prototyping approach. Wear. 2022;510–511:204493. doi: 10.1016/j.wear.2022.204493.
  • Li Y, Cai X, Zhang G, et al. Optimization of electrodeposition nanocrytalline Ni-Fe alloy coatings for the replacement of ni coatings. J Alloys Compd. 2022;903:163761. doi: 10.1016/j.jallcom.2022.163761.
  • Zhang Z, Tang P, Wen H, et al. Bicontinuous nanoporous Ni-Fe alloy as a highly active catalyst for hydrazine electrooxidation. J Alloys Compd. 2022;906:164370. doi: 10.1016/j.jallcom.2022.164370.
  • Xu W, Qiu R, Mao X, et al. One-step fabrication of amorphous Ni-Fe phosphated alloys as efficient bifunctional electrocatalysts for overall water splitting. J Non-Cryst Solids. 2022;587:121598. doi: 10.1016/j.jnoncrysol.2022.121598.
  • Zhu M, Yi H, Lu J, et al. Corrosion of ni–fe based alloy in chloride molten salts for concentrating solar power containing aluminum as corrosion inhibitor. Sol Energy Mater Sol Cells. 2022;241:111737. doi: 10.1016/j.solmat.2022.111737.
  • Xia F, Li C, Ma C, et al. Effect of pulse current density on microstructure and wear property of Ni-TiN nanocoatings deposited via pulse electrodeposition. Appl Surf Sci. 2021;538:148139. doi: 10.1016/j.apsusc.2020.148139.
  • Li Q, Xia F, Liu G, et al. Microstructure and properties of jet pulse electrodeposited Ni-TiN nanocoatings. J of Materi Eng and Perform. 2022;31(11):8823–8829. doi: 10.1007/s11665-022-06909-y.
  • Liu T. Synthesis and wear characterization of ultrasonic electrodeposited Ni-TiN thin coatings. Int J Electrochem Sci. 2021;16(1):151028. doi: 10.20964/2021.01.50.
  • Karahan İH, Aminifazl A, Golden TD. Effect of TMAB concentration on structural, mechanical and corrosion properties of electrodeposited Ni–B alloys. J Indian Chem Soc. 2022;99(6):100467. doi: 10.1016/j.jics.2022.100467.
  • Zhang Y, Shen X. Facile fabrication of robust superhydrophobic coating for enhanced corrosion protection on AZ91 magnesium alloy by electroless Ni-B/GO plating. Surf Coat Technol. 2023;455:129213. doi: 10.1016/j.surfcoat.2022.129213.
  • Xu J, Zhang T. On the eutectic transition of undercooled hypoeutectic Ni-B alloy in the differing heat extraction process. Mater Lett X. 2022;13:100128. doi: 10.1016/j.mlblux.2022.100128.
  • Venkatakrishnan PG, Karthik V. Structural, morphological and mechanical properties of electroless Ni-B based alloy coatings. Mater Today Proc. 2020;27:2360–2363. doi: 10.1016/j.matpr.2019.09.129.
  • Yi P, Qiu H, Wu Y, et al. Drilling fluid adhesion resistance of electroless plating nickel phosphorus (Ni-P) alloy coating deposited on laser-textured surface of bit waterways. Tribol Int. 2023;178:108081. doi: 10.1016/j.triboint.2022.108081.
  • Liu C, Yin Y, Li C, et al. Preparation and properties of Ni-P/Bi self-lubricating composite coating on copper alloys. Surf Coat Technol. 2022;443:128617. doi: 10.1016/j.surfcoat.2022.128617.
  • Roy S, Mishra BM, Bose GK. Characterization of Ni-P based poly-alloy and composite coatings involving nanoindentation and nanoscratch tests. Mater Today Commun. 2021;29:102991. doi: 10.1016/j.mtcomm.2021.102991.
  • Naderi J, Sarhan AAD. Measure and evaluate the hardness of the electrodeposited nickel-phosphorous (Ni-P) thin film coating on carbon steel alloy for automotive applications. Measurement. 2019;139:490–497. doi: 10.1016/j.measurement.2019.03.027.
  • Saxena A, Saxena KK, Jain VK, et al. A review of reinforcements and process parameters for powder metallurgy-processed metal matrix composites. Mater Today Proc. 2023. In press. doi: 10.1016/j.matpr.2023.02.227.
  • Ren A, Kang M, Fu X. Corrosion behaviour of ni/WC-MoS2 composite coatings prepared by jet electrodeposition with different MoS2 doping concentrations. Appl Surf Sci. 2023;613:155905. doi: 10.1016/j.apsusc.2022.155905.
  • Ren A, Kang M, Fu X. Tribological behaviour of ni/WC–MoS2 composite coatings prepared by jet electrodeposition with different nano-MoS2 doping concentrations. Eng Fail Anal. 2023;143:106934. doi: 10.1016/j.engfailanal.2022.106934.
  • Wang Q, Luo S, Wang S, et al. Wear, erosion and corrosion resistance of HVOF-sprayed WC and Cr3C2 based coatings for electrolytic hard chrome replacement. Int J Refract Met Hard Mater. 2019;81:242–252. doi: 10.1016/j.ijrmhm.2019.03.010.
  • Srivastava M, Anandan C, Grips VKW. Ni–Mo–Co ternary alloy as a replacement for hard chrome. Appl Surf Sci. 2013;285:167–174. doi: 10.1016/j.apsusc.2013.08.025.
  • Liu T. Effect of SiC concentration on microstructure and properties of Ni-Co/SiC nanocomposites fabricated by pulse electrodeposition. Int J Electrochem Sci. 2020;15:12103–12121. doi: 10.20964/2020.12.25.
  • Liu H, Wang H, Yu W, et al. Effect of TiN concentration on microstructure and properties of ni/W–TiN composites obtained by pulse current electrodeposition. Ceram Int. 2021;47(17):24331–24339. doi: 10.1016/j.ceramint.2021.05.145.
  • Xia F, Li Q, Ma C, et al. Preparation and wear properties of ni/TiN–SiC nanocoatings obtained by pulse current electrodeposition. Ceram Int. 2020;46(6):7961–7969. doi: 10.1016/j.ceramint.2019.12.017.
  • Cheng X, He Y, Song R, et al. Study of mechanical character and corrosion properties of La2O3 nanoparticle reinforced Ni-W composite coatings. Colloids Surf, A. 2022;652:129799. doi: 10.1016/j.colsurfa.2022.129799.
  • Li M-Y, Wang Z-X, Zhang B, et al. Enhancing fatigue resistance of nanocrystalline Ni/Ni-W laminated composites. Scr Mater. 2023;222:114995. doi: 10.1016/j.scriptamat.2022.114995.
  • Liu B, Yan S, He Y, et al. Study on wear resistance and corrosion resistance of zirconium phenylphosphonate reinforced Ni–W composite coating. Appl Surf Sci. 2022;603:154483. doi: 10.1016/j.apsusc.2022.154483.
  • Zhong J, Zhang S, He Y, et al. Preparation, corrosion resistance and mechanical properties of electroless Ni-W-P-eGO composite coatings. Colloids Surf A. 2022;651:129704. doi: 10.1016/j.colsurfa.2022.129704.
  • Bin Humam S, Gyawali G, Amanov A, et al. Microstructure, interface, and nanostructured surface modifications to improve mechanical and tribological performance of electrodeposited Ni-W-TaC composite coating. Surf Coat Technol. 2021;419:127293. doi: 10.1016/j.surfcoat.2021.127293.
  • Figuet D, Billard A, Savall C, et al. A comparison between the microstructure and the functional properties of NiW coatings produced by magnetron sputtering and electrodeposition. Mater Chem Phys. 2022;276:125332. doi: 10.1016/j.matchemphys.2021.125332.
  • Moradi M J, Moradi G, Heydarinasab A, et al. Preparation and optimization of Ni-Co/Al2O3-ZrO2 films as catalytic coating on microchannels reactor for methane dry reforming. Mater Today Commun. 2023;34:105226. doi: 10.1016/j.mtcomm.2022.105226.
  • Rezayat M, Yazdi MS, Zandi MD, et al. Tribological and corrosion performance of electrodeposited Ni–Fe/Al2O3 coating. Res Surf Interf. 2022;9:100083. doi: 10.1016/j.rsurfi.2022.100083.
  • Pandiyarajan S, Manickaraj SSM, Liao A-H, et al. Recovery of Al2O3 from hazardous al waste as a reinforcement particle for high-performance Ni/Al2O3 corrosion resistance coating via ultrasonic-aided supercritical-CO2 electrodeposition. Chemosphere. 2023;313:137626. doi: 10.1016/j.chemosphere.2022.137626.
  • Sadri E, Bakhshi SR, Heidari M, et al. Mechanical properties and tribological behaviors of ni (5Al)-Al2O3-MoS2-Ag composite coatings at various temperatures. Surf Coat Technol. 2023;456:129251. doi: 10.1016/j.surfcoat.2023.129251.
  • Yan L, Yan S, He Y, et al. Preparation, corrosion resistance and mechanical properties of electroless Ni-B/α-ZrP composite coatings. Colloids Surf A. 2022;654:130132. doi: 10.1016/j.colsurfa.2022.130132.
  • Song J, He Y, Li H, et al. Preparation of pulse electrodeposited Ni-B/ZrC composite coatings and investigation of their mechanical properties and corrosion resistance. Surf Coat Technol. 2022;447:128845. doi: 10.1016/j.surfcoat.2022.128845.
  • Wang J, Xiang C, Sui Q, et al. Facile preparation of ni(OH)2-B/S composite with an embroidered spherical nanosheet structure for high-performance supercapacitors. J Storage Mater. 2022;50:104616. doi: 10.1016/j.est.2022.104616.
  • Zhang Y, Zhang S, He Y, et al. Mechanical properties and corrosion resistance of pulse electrodeposited Ni-B/B4C composite coatings. Surf Coat Technol. 2021;421:127458. doi: 10.1016/j.surfcoat.2021.127458.
  • Wang Q, Li Q, Zhang L, et al. Microstructure and properties of Ni-WC gradient composite coating prepared by laser cladding. Ceram Int. 2022;48(6):7905–7917. doi: 10.1016/j.ceramint.2021.11.338.
  • Yang R, Tian Y, Huang N, et al. Effects of CeO2 addition on microstructure and cavitation erosion resistance of laser-processed Ni-WC composites. Mater Lett. 2022;311:131583. doi: 10.1016/j.matlet.2021.131583.
  • Zhang H, Wang J, Chen S, et al. Ni–SiC composite coatings with improved wear and corrosion resistance synthesized via ultrasonic electrodeposition. Ceram Int. 2021;47(7):9437–9446. doi: 10.1016/j.ceramint.2020.12.076.
  • Wasekar NP, O'Mullane AP, Sayeed MA, et al. Influence of SiC reinforcement content and heat treatment on the corrosion behavior of pulsed electrodeposited Ni-W alloy metal matrix composite. Materialia. 2022;22:101390. doi: 10.1016/j.mtla.2022.101390.
  • Huang P-C, Hou K-H, Hong J-J, et al. Study of fabrication and wear properties of Ni–SiC composite coatings on A356 aluminum alloy. Wear. 2021;477:203772. doi: 10.1016/j.wear.2021.203772.
  • Nemane V, Chatterjee S. Evaluation of microstructural, mechanical, and tribological characteristics of Ni-B-W-SiC electroless composite coatings involving multi-pass scratch test. Mater Charact. 2021;180:111414. doi: 10.1016/j.matchar.2021.111414.
  • Wani SM, Ahmad B, Saleem SS. Nano-mechanical and nano-tribological characterization of Ni-Co-BN nano-composite coating for bearing applications. Tribol Int. 2023;180:108281. doi: 10.1016/j.triboint.2023.108281.
  • Corthay S, Kutzhanov MK, Narzulloev UU, et al. Ni/h-BN composites with high strength and ductility. Mater Lett. 2022;308:131285. doi: 10.1016/j.matlet.2021.131285.
  • Huang P-C, Chou C-C, Wang H-T, et al. Tribocorrosion study of electrodeposited NiW alloy/BN(h) composited coatings for piston rings. Surf Coat Technol. 2022;436:128289. doi: 10.1016/j.surfcoat.2022.128289.
  • Hong Q, Wang D, Yin S. The microstructure, wear and electrochemical properties of electrodeposited ni-diamond composite coatings: effect of diamond concentration. Mater Today Commun. 2023;34:105476. doi: 10.1016/j.mtcomm.2023.105476.
  • Qu S, Zheng K, Gao J, et al. Diamond particles-reinforced ni-based composite coating on Ti6Al4V alloy: microstructure, mechanical, dynamic impact and dry-sliding tribological properties. Surf Coat Technol. 2023;458:129307. doi: 10.1016/j.surfcoat.2023.129307.
  • Hou, K-H, Sheu, H-H, Ger, M-D, et al., Preparation and wear resistance of electrodeposited ni–W/diamond composite coatings. Appl Surf Sci. 2014. 308:372–379. doi: 10.1016/j.apsusc.2014.04.175.
  • Wang H-T, Sheu H-H, Ger M-D, et al. The effect of heat treatment on the microstructure and mechanical properties of electrodeposited nanocrystalline Ni–W/diamond composite coatings. Surf Coat Technol. 2014;259:268–273. doi: 10.1016/j.surfcoat.2014.03.064.
  • Harachai K, Kothanam N, Qin J, et al. Hardness and tribological properties of co-electrodeposited Ni-W-B/B coatings. Surf Coat Technol. 2020;402:126313. doi: 10.1016/j.surfcoat.2020.126313.
  • Liu J, Doh J-H, Dinh HL, et al. Effect of si/al molar ratio on the strength behavior of geopolymer derived from various industrial waste: a current state of the art review. Constr Build Mater. 2022;329:127134. doi: 10.1016/j.conbuildmat.2022.127134.
  • Wang H, Wang H, Liao J, et al. Technological properties of a branched polyethyleneimine derivative as a cross-linker for low molar ratio urea-formaldehyde resins. Polym Test. 2023;118:107914. doi: 10.1016/j.polymertesting.2022.107914.
  • Xu Z-B, Kou S-Q, Yang H-Y, et al. The effect of carbon source and molar ratio in Fe–Ti–C system on the microstructure and mechanical properties of in situ TiC/Fe composites. Ceram Int. 2022;48(20):30418–30429. doi: 10.1016/j.ceramint.2022.06.319.
  • Zhang X, Wang K, Huang H, et al. Influences of crystallization time, batch molar ratios Al2O3/SiO2 and Na2O/SiO2 on particulate properties of sodalite crystals prepared under room-temperature conditions. Adv Powder Technol. 2023;34(2):103957. doi: 10.1016/j.apt.2023.103957.
  • Serhal CA, El Khawaja R, Labaki M, et al. Influence of co/fe molar ratio on hydrotalcite catalysts prepared with or without microwave. J Solid State Chem. 2022;309:122943. doi: 10.1016/j.jssc.2022.122943.
  • Zhang P, Kang L, Zheng Y, et al. Influence of SiO2/Na2O molar ratio on mechanical properties and durability of metakaolin-fly ash blend alkali-activated sustainable mortar incorporating manufactured sand. J Mater Res Technol. 2022;18:3553–3563. doi: 10.1016/j.jmrt.2022.04.041.
  • Jiang Z, Xiong T, Bai Z, et al. Effect of si/zr molar ratio on the sintering and crystallization behavior of zircon ceramics. J Eur Ceram Soc. 2020;40(13):4605–4612. doi: 10.1016/j.jeurceramsoc.2020.05.043.
  • Tang J, Ji X, Liu X, et al. Mechanical and microstructural properties of phosphate-based geopolymers with varying si/al molar ratios based on the sol-gel method. Mater Lett. 2022;308:131178. doi: 10.1016/j.matlet.2021.131178.
  • Dehghani A, Aslani F, Ghaebi Panah N. Effects of initial SiO2/Al2O3 molar ratio and slag on fly ash-based ambient cured geopolymer properties. Constr Build Mater. 2021;293:123527. doi: 10.1016/j.conbuildmat.2021.123527.
  • Kim K-H, Sukenaga S, Tashiro M, et al. Variation in viscosity of aluminosilicate melts with MgO/CaO molar ratio: influence of five-fold coordinated aluminum. J Non-Cryst Solids. 2022;587:121600. doi: 10.1016/j.jnoncrysol.2022.121600.
  • Im S, Jee H, Suh H, et al. Insight on the mechanical properties of hierarchical porous calcium-silicate-hydrate pastes according to the Ca/Si molar ratio using in-situ synchrotron X-ray scattering and nanoindentation test. Constr Build Mater. 2023;365:130034. doi: 10.1016/j.conbuildmat.2022.130034.
  • Xie C, Deng K, Teng J, et al. Microstructural evolution and mechanical properties of Ni-based superalloy joints brazed using a ternary Ni-W-B amorphous brazing filler metal. J Alloys Compd. 2023;960:170663. doi: 10.1016/j.jallcom.2023.170663.
  • Liu T, Li H, Xiao Z. Effect of SiC nanoparticle content on the properties of Ni-W-SiC nanocomposite thin films deposited by pulse current electrodeposition. Int J Electrochem Sci. 2023;18(5):100130. doi: 10.1016/j.ijoes.2023.100130.
  • Bathini L, Prasad MJNV, Wasekar NP. Compositionally modulated Ni-W multilayer coatings: a facile approach to enhance the tribological performance. Tribol Int. 2023;179:108145. doi: 10.1016/j.triboint.2022.108145.
  • Zenou VY, Bakardjieva S. Microstructural analysis of undoped and moderately Sc-doped TiO2 anatase nanoparticles using Scherrer equation and debye function analysis. Mater Charact. 2018;144:287–296. doi: 10.1016/j.matchar.2018.07.022.
  • Lim DJ, Marks NA, Rowles MR. Universal scherrer equation for graphene fragments. Carbon. 2020;162:475–480. doi: 10.1016/j.carbon.2020.02.064.
  • Liu B, Bruni S, Lewis R. Numerical calculation of wear in rolling contact based on the archard equation: effect of contact parameters and consideration of uncertainties. Wear. 2022;490–491:204188. doi: 10.1016/j.wear.2021.204188.
  • Das MK, Li R, Qin J, et al. Effect of electrodeposition conditions on structure and mechanical properties of Ni-W/diamond composite coatings. Surf Coat Technol. 2017;309:337–343. doi: 10.1016/j.surfcoat.2016.11.074.
  • Yuan Z, Li B, Miao Y, et al. Synthesis and protective properties of Ni-W alloy strengthened by incorporation of diamond particles. J Alloys Compd. 2021;883:160831. doi: 10.1016/j.jallcom.2021.160831.
  • Zhang X, Qin J, Das MK, et al. Co-electrodeposition of hard Ni-W/diamond nanocomposite coatings. Sci Rep. 2016;6(1):22285. doi: 10.1038/srep22285.
  • Quiroga Argañaraz MP, Gassa LM, Zelaya E, et al. Chapter 4 – Synthesis, characterization and applications of nanostructured Ni-W alloys with good corrosion resistance and high hardness. In: Hussain CM, editor. Handbook of nanomaterials for manufacturing applications. Amsterdam: Elsevier; 2020. p. 79–110.
  • Liu JH, Yan JX, Liu YD, et al. Impact of annealing temperature on the microstructure, microhardness, tribological properties and corrosion resistance of ni–mo/diamond composites. Appl Surf Sci. 2021;541:148367. doi: 10.1016/j.apsusc.2020.148367.
  • Rossetti M, Mathiyalagan S, Björklund S, et al. Advanced diamond-reinforced metal matrix composite (DMMC) coatings via HVAF process: effect of particle size and nozzle characteristics on tribological properties. Ceram Int. 2023;49(11):17838–17850. doi: 10.1016/j.ceramint.2023.02.150.
  • Zhang X, Qin J, Perasinjaroen T, et al. Preparation and hardness of pulse electrodeposited ni–W–diamond composite coatings. Surf Coat Technol. 2015;276:228–232. doi: 10.1016/j.surfcoat.2015.06.073.
  • Cheng M, Jiao L, Yan P, et al. Prediction and evaluation of surface roughness with hybrid kernel extreme learning machine and monitored tool wear. J Manuf Processes. 2022;84:1541–1556. doi: 10.1016/j.jmapro.2022.10.072.
  • Shang X, Yu K, Zuo X, et al. Low wear braking material with high friction coefficient. Tribol Int. 2022;173:107608. doi: 10.1016/j.triboint.2022.107608.
  • Ghatrehsamani S, Akbarzadeh S, Khonsari MM. Experimentally verified prediction of friction coefficient and wear rate during running-in dry contact. Tribol Int. 2022;170:107508. doi: 10.1016/j.triboint.2022.107508.
  • Buj-Corral I, Sender P, Luis-Pérez CJ. Multi-objective optimization of tool wear, surface roughness, and material removal rate in finishing honing processes using adaptive neural fuzzy inference systems. Tribol Int. 2023;182:108354. doi: 10.1016/j.triboint.2023.108354.