514
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Achieving acceptable electromagnetic interference shielding in UHMWPE/ground tire rubber composites by building a segregated network of hybrid conductive carbon black

, , , , , , , , & show all
Pages 100-115 | Received 30 May 2023, Accepted 17 Aug 2023, Published online: 14 Sep 2023

References

  • Liu C, Yu CY, Sang GL, et al. Ding, improvement in EMI shielding properties of silicone rubber/POE blends containing ILs modified with carbon black and MWCNTs. Appl Sci. 2019;9(9):1774. doi: 10.3390/app9091774.
  • Chen W, Liu P, Liu Y, et al. Recent advances in two-dimensional Ti3C2Tx MXene for flame retardant polymer materials. Chem Eng J. 2022;446:137239. doi: 10.1016/j.cej.2022.137239.
  • Formela K, Cysewska M, Korol J. Effect of compounding conditions on static and dynamic mechanical properties of high density polyethylene/ground tire rubber blends. Int Polym Process. 2014;29(2):272–279. doi: 10.3139/217.2849.
  • Wang YH, Chen YK, Rodrigue D. Production of thermoplastic elastomers based on recycled PE and ground tire rubber: morphology, mechanical properties and effect of compatibilizer addition. Int Polym Process. 2018;33(4):525–534. doi: 10.3139/217.3544.
  • Xie Y, Ye L, Chen W, et al. Electrically conductive and all-weather materials from waste cross-linked polyethylene cables for electromagnetic interference shielding. Ind Eng Chem Res. 2022;61(10):3610–3619. doi: 10.1021/acs.iecr.1c04813.
  • Zhu J, Zhang X, Liang M, et al. Enhancement of processability and foamability of ground tire rubber powder and LDPE blends through solid state shear milling. J Polym Res. 2011;18(4):533–539. doi: 10.1007/s10965-010-9446-9.
  • Simon-Stőger L, Varga C. PE-contaminated industrial waste ground tire rubber: how to transform a handicapped resource to a valuable one. Waste Manag. 2021;119:111–121. doi: 10.1016/j.wasman.2020.09.037.
  • Aigbodion VS. Explicit microstructure and electrical conductivity of epoxy/carbon nanotube and green silver nanoparticle enhanced hybrid dielectric composites. Nanocomposites. 2021;7(1):35–43. doi: 10.1080/20550324.2020.1868690.
  • Stern N, Dyamant I, Shemer E, et al. Hybrid effects in the fracture toughness of polyvinyl butyral-based nanocomposites. Nanocomposites. 2018;4(1):1–9. doi: 10.1080/20550324.2018.1447827.
  • Cao S, Tao Y, Li H, et al. Multiscale hybrid CNT and CF reinforced PEEK composites with enhanced EMI properties. Nanocomposites. 2022;8(1):184–193. doi: 10.1080/20550324.2022.2100683.
  • Duan L, Zhou Y, Deng H, et al. The influence of blend composition and filler on the microstructure, crystallization, and mechanical behavior of polymer blends with multilayered structures. Nanocomposites. 2018;4(4):178–189. doi: 10.1080/20550324.2018.1557432.
  • JIa LC, Li YK, Yan DX. Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon. 2017;121:267–273. doi: 10.1016/j.carbon.2017.05.100.
  • Hu N, Masuda Z, Yan C, et al. The electrical properties of polymer nanocomposites with carbon nanotube fillers. Nanotechnology. 2008;19(21):215701. doi: 10.1088/0957-4484/19/21/215701.
  • Cheng H, Cao C, Zhang Q, et al. Enhancement of electromagnetic interference shielding performance and wear resistance of the UHMWPE/PP blend by constructing a segregated hybrid conductive carbon black–polymer network. ACS Omega. 2021;6(23):15078–15088. doi: 10.1021/acsomega.1c01240.
  • Matzui LY, Syvolozhskyi OA, Vovchenko LL, et al. Electrical and electromagnetic interference shielding properties of GNP-NiFe hybrid composite with segregate structure of conductive networks. J Appl Phys. 2022;131(5):055110.
  • Deeraj BDS, Jayan JS, Raman A, et al. Polymeric blends and nanocomposites for high performance EMI shielding and microwave absorbing applications. Compos Interfaces. 2022;29(13):1505–1547. doi: 10.1080/09276440.2022.2068245.
  • Sheng A, Yang YQ, Ren W, et al. Ground tire rubber composites with hybrid conductive network for efficiency electromagnetic shielding and low reflection. J Mater Sci Mater Electron. 2019;30(15):14669–14678.
  • Rahaman M, Aldalbahi A, Govindasami P, et al. A new insight in determining the percolation threshold of electrical conductivity for extrinsically conducting polymer composites through different sigmoidal models. Polymers. 2017;9(10):527. doi: 10.3390/polym9100527.
  • Rahaman M, Chaki TK, Khastgir D. Determination of percolation limits of conductivity, dielectric constant, and EMI SE for conducting polymer composites using sigmoidal Boltzmann model. Adv Sci Lett. 2012;10(1):115–117. doi: 10.1166/asl.2012.2138.
  • Rahaman M, Al Ghufais IA, Periyasami G, et al. Recycling and reusing polyethylene waste as antistatic and electromagnetic interference shielding materials. Int J Polym Sci. 2020;2020:1–15. doi: 10.1155/2020/6421470.
  • You W, Yu W. Onset reduction and stabilization of cocontinuous morphology in immiscible polymer blends by snowmanlike Janus nanoparticles. Langmuir. 2018;34(37):11092–11100. doi: 10.1021/acs.langmuir.8b02503.
  • Chen J, Cui X, Sui K, et al. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos Sci Technol. 2017;140:99–105. doi: 10.1016/j.compscitech.2016.12.029.
  • Thongruang W, Spontak RJ, Balik CM. Bridged double percolation in conductive polymer composites: an electrical conductivity, morphology and mechanical property study. Polymer. 2002;43(13):3717–3725. doi: 10.1016/S0032-3861(02)00180-5.
  • Salzano de Luna M, Filippone G. Effects of nanoparticles on the morphology of immiscible polymer blends – challenges and opportunities. Eur Polym J. 2016;79:198–218. doi: 10.1016/j.eurpolymj.2016.02.023.
  • Wu Z, Yang Z, Jin C, et al. Accurately engineering 2D/2D/0D heterojunction in hierarchical Ti3C2Tx MXene nanoarchitectures for electromagnetic wave absorption and shielding. ACS Appl Mater Interfaces. 2021;13(4):5866–5876. doi: 10.1021/acsami.0c21833.
  • Zhou W, Chen Q, Sui X, et al. Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites. Compos A Appl Sci Manuf. 2015;71:184–191. doi: 10.1016/j.compositesa.2015.01.024.
  • Huang Y, Tan L, Zheng S, et al. Enhanced dielectric properties of polyamide 11/multi-walled carbon nanotubes composites. J Appl Polym Sci. 2015;132(40):42642. doi: 10.1002/app.42642.
  • Hamidinejad M, Zhao B, Chu RKM, et al. Ultralight microcellular polymer-graphene nanoplatelet foams with enhanced dielectric performance. ACS Appl Mater Interfaces. 2018;10(23):19987–19998. doi: 10.1021/acsami.8b03777.
  • Wang H, Xie H, Wang S, et al. Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets. Compos A Appl Sci Manuf. 2018;108:62–68. doi: 10.1016/j.compositesa.2018.02.020.
  • Yuan JK, Yao SH, Dang ZM, et al. Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in polyvinylidene fluoride matrix through an enhanced interfacial interaction. J Phys Chem C. 2011;115(13):5515–5521. doi: 10.1021/jp1117163.
  • Saini P, Arora M, Gupta G, et al. High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response. Nanoscale. 2013;5(10):4330–4336. doi: 10.1039/c3nr00634d.
  • Wang H, Li SN, Liu MY, et al. Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromol Mater Eng. 2021;306(6):2100032. doi: 10.1002/mame.202100032.
  • Schelkunoff SA. The electromagnetic theory of coaxial transmission lines and cylindrical shields. Bell Syst Tech J. 1934;13(4):532–579. doi: 10.1002/j.1538-7305.1934.tb00679.x.
  • Al-Saleh MH, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon. 2009;47(7):1738–1746. doi: 10.1016/j.carbon.2009.02.030.
  • Zhang Y, Pan T, Yang ZJ. Flexible polyethylene terephthalate/polyaniline composite paper with bending durability and effective electromagnetic shielding performance. Chem Eng J. 2020;389:124433.
  • Thomassin JM, Jerome C, Pardoen T, et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng R Rep. 2013;74(7):211–232. doi: 10.1016/j.mser.2013.06.001.
  • Zhang WB, Wei LF, Ma ZL, et al. Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon. 2021;177:412–426. doi: 10.1016/j.carbon.2021.02.093.
  • Al-Saleh MH. Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synth Met. 2015;205:78–84. doi: 10.1016/j.synthmet.2015.03.032.
  • Al-Saleh MH, Saadeh WH, Sundararaj U. EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon. 2013;60:146–156. doi: 10.1016/j.carbon.2013.04.008.
  • Rahaman M, Gupta P, Hossain M, et al. Predicting percolation threshold value of EMI SE for conducting polymer composite systems through different sigmoidal models. J Electron Mater. 2022;51(4):1788–1803. doi: 10.1007/s11664-022-09444-7.
  • Taherian R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos Sci Technol. 2016;123:17–31. doi: 10.1016/j.compscitech.2015.11.029.
  • Shi YD, Li J, Tan YJ, et al. Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites. Compos Sci Technol. 2019;170:70–76. doi: 10.1016/j.compscitech.2018.11.033.