786
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Ultrahigh adsorption capacity of a new metal sieve-like structure nanocomposite-based chitosan-graphene oxide nanosheet coated with poly-o-toluidine for the removal of Acid Red dye from the aquatic environment

ORCID Icon &
Pages 80-99 | Received 21 Jun 2023, Accepted 17 Aug 2023, Published online: 01 Sep 2023

References

  • Najafi Chaleshtori A, Meghaddam FM, Sadeghi M, et al. Removal of acid red 18 (Azo-Dye) from aqueous solution by adsorption onto activated charcoal prepared from almond shell. JESAM. 2017;20(2):9–16. doi: 10.47125/jesam/2017_2/02.
  • Saleh TA, Al-Ruwayshid SH, Sarı A, et al. Synthesis of silica nanoparticles grafted with copolymer of acrylic acrylamide for ultra-removal of methylene blue from aquatic solutions. Eur Polym J. 2020;130:109698. doi: 10.1016/j.eurpolymj.2020.109698.
  • Acisli O, Khataee A, Karaca S, et al. Modification of nanosized natural montmorillonite for ultrasound-enhanced adsorption of acid red 17. Ultrason Sonochem. 2016;31:116–121. doi: 10.1016/j.ultsonch.2015.12.012.
  • Ashrafi SD, Rezaei S, Forootanfar H, et al. The enzymatic decolorization and detoxification of synthetic dyes by the laccase from a soil-isolated ascomycete, paraconiothyrium variabile. Int Biodeterior Biodegrad. 2013;85:173–181. doi: 10.1016/j.ibiod.2013.07.006.
  • Altıntıg E, Yenigun M, Sarı A, et al. Facile synthesis of zinc oxide nanoparticles loaded activated carbon as an eco-friendly adsorbent for ultra-removal of malachite green from water. Environ Technol Innov. 2021;21:101305. doi: 10.1016/j.eti.2020.101305.
  • Gholami-Borujeni F, Mahvi AH, Nasseri S, et al. Enzymatic treatment and detoxification of acid orange 7 from textile wastewater. Appl Biochem Biotechnol. 2011;165(5-6):1274–1284. doi: 10.1007/s12010-011-9345-5.
  • Zhao T, Li P, Tai C, et al. Efficient decolorization of typical azo dyes using low-frequency ultrasound in presence of carbonate and hydrogen peroxide. J Hazard Mater. 2018;346:42–51. doi: 10.1016/j.jhazmat.2017.12.009.
  • Tuzen M, Sarı A, Saleh TA. Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite. J Environ Manage. 2018;206:170–177. doi: 10.1016/j.jenvman.2017.10.016.
  • Koupaie EH, Moghaddam MA, Hashemi S. Post-treatment of anaerobically degraded azo dye acid red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines. J Hazard Mater. 2011;195:147–154. doi: 10.1016/j.jhazmat.2011.08.017.
  • Mirzadeh S-S, Khezri S-M, Rezaei S, et al. Decolorization of two synthetic dyes using the purified laccase of paraconiothyrium variabile immobilized on porous silica beads. J Environ Health Sci Eng. 2014;12(1):6. doi: 10.1186/2052-336X-12-6.
  • Bazrafshan E, Alipour MR, Mahvi AH. Textile wastewater treatment by application of combined chemical coagulation, electrocoagulation, and adsorption processes. Desalin Water Treat. 2016;57(20):9203–9215. doi: 10.1080/19443994.2015.1027960.
  • Dalvand A, Nabizadeh R, Ganjali MR, et al. Modeling of reactive blue 19 azo dye removal from colored textile wastewater using L-arginine-functionalized Fe3O4 nanoparticles: optimization, reusability, kinetic and equilibrium studies. J Magn Magn Mater. 2016;404:179–189. doi: 10.1016/j.jmmm.2015.12.040.
  • Altintig E, Onaran M, Sarı A, et al. Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution. Mater Chem Phys. 2018;220:313–321. doi: 10.1016/j.matchemphys.2018.05.077.
  • Abdullah NH, Inu I, Razab M, et al. Effect of acidic and alkaline treatments to methylene blue adsorption from aqueous solution by coconut shell activated carbon. IJCRSET. 2018;1(Spl-1):319–324. doi: 10.30967/ijcrset.1.S1.2018.319-324.
  • Shokoohi R, Vatanpoor V, Zarrabi M, et al. Adsorption of acid red 18 (AR18) by activated carbon from poplar wood-A kinetic and equilibrium study. E-J Chem. 2010;7(1):65–72. doi: 10.1155/2010/958073.
  • Altıntıg E, Altundag H, Tuzen M, et al. Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem Eng Res Des. 2017;122:151–163. doi: 10.1016/j.cherd.2017.03.035.
  • Bazrafshan E, Mostafapour FK, Hosseini AR, et al. Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. J Chem. 2013;2013:1–8. doi: 10.1155/2013/938374.
  • Saleh TA, Elsharif AM, Bin-Dahman OA. Synthesis of amine functionalization carbon nanotube-low symmetry porphyrin derivatives conjugates toward dye and metal ions removal. J Mol Liq. 2021;340:117024. doi: 10.1016/j.molliq.2021.117024.
  • Saleh TA, Tuzen M, Sarı A. Evaluation of poly (ethylene diamine-trimesoyl chloride)-modified diatomite as efficient adsorbent for removal of rhodamine B from wastewater samples. Environ Sci Pollut Res Int. 2021;28(39):55655–55666. doi: 10.1007/s11356-021-14832-3.
  • Gouthaman A, Azarudeen RS, Gnanaprakasam A, et al. Polymeric nanocomposites for the removal of acid red 52 dye from aqueous solutions: synthesis, characterization, kinetic and isotherm studies. Ecotoxicol Environ Saf. 2018;160:42–51. doi: 10.1016/j.ecoenv.2018.05.011.
  • Pandey N, Shukla SK, Singh NB. Water purification by polymer nanocomposites: an overview. Nanocomposites. 2017;3(2):47–66. doi: 10.1080/20550324.2017.1329983.
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–191. doi: 10.1038/nmat1849.
  • Li D, Kaner RB. Graphene-based materials. Science. 2008;320(5880):1170–1171. doi: 10.1126/science.1158180.
  • Geim AK. Graphene: status and prospects. Science. 2009;324(5934):1530–1534. doi: 10.1126/science.1158877.
  • Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev. 2012;41(2):666–686. doi: 10.1039/c1cs15078b.
  • Xu Y, Zhao L, Bai H, et al. Chemically converted graphene induced molecular flattening of 5, 10, 15, 20-tetrakis (1-methyl-4-pyridinio) porphyrin and its application for optical detection of cadmium (II) ions. J Am Chem Soc. 2009;131(37):13490–13497. doi: 10.1021/ja905032g.
  • Jin F, Lv W, Zhang C, et al. High-performance ultrafiltration membranes based on polyethersulfone–graphene oxide composites. RSC Adv. 2013;3(44):21394–21397. doi: 10.1039/c3ra42908c.
  • Gao B, Li P, Yang R, et al. Investigation of multiple adsorption mechanisms for efficient removal of ofloxacin from water using lignin-based adsorbents. Sci Rep. 2019;9(1):637. doi: 10.1038/s41598-018-37206-1.
  • Hokkanen S, Bhatnagar A, Sillanpää M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016;91:156–173. doi: 10.1016/j.watres.2016.01.008.
  • Haroon M, Yu H, Wang L, et al. Synthesis and characterization of carboxymethyl starch-g-polyacrylic acids and their properties as adsorbents for ammonia and phenol. Int J Biol Macromol. 2019;138:349–358. doi: 10.1016/j.ijbiomac.2019.07.046.
  • Vakili M, Rafatullah M, Salamatinia B, et al. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym. 2014;113:115–130. doi: 10.1016/j.carbpol.2014.07.007.
  • Chauhan K, Kaur J, Kumari A, et al. Efficient method of starch functionalization to bis-quaternary structure unit. Int J Biol Macromol. 2015;80:498–505. doi: 10.1016/j.ijbiomac.2015.07.011.
  • Song W, Gao B, Xu X, et al. Adsorption of nitrate from aqueous solution by magnetic amine-crosslinked biopolymer based corn stalk and its chemical regeneration property. J Hazard Mater. 2016;304:280–290. doi: 10.1016/j.jhazmat.2015.10.073.
  • Zhang W, Yan H, Li H, et al. Removal of dyes from aqueous solutions by straw based adsorbents: batch and column studies. Chem Eng J. 2011;168(3):1120–1127. doi: 10.1016/j.cej.2011.01.094.
  • Sahu S, Mallik L, Pahi S, et al. Facile synthesis of poly o-toluidine modified lanthanum phosphate nanocomposite as a superior adsorbent for selective fluoride removal: a mechanistic and kinetic study. Chemosphere. 2020;252:126551. doi: 10.1016/j.chemosphere.2020.126551.
  • Alqarni SA. Deliberated system of ternary core–shell polythiophene/ZnO/MWCNTs and polythiophene/ZnO/ox-MWCNTs nanocomposites for brilliant green dye removal from aqueous solutions. Nanocomposites. 2022;8(1):47–63. doi: 10.1080/20550324.2022.2054209.
  • Raval NP, Priyadarshi GV, Mukherjee S, et al. Statistical physics modeling and evaluation of adsorption properties of chitosan-zinc oxide nanocomposites for the removal of an anionic dye. J Environ Chem Eng. 2022;10(6):108873. doi: 10.1016/j.jece.2022.108873.
  • Lee J, Patel R. Wastewater treatment by polymeric microspheres: a review. Polymers (Basel). 2022;14(9):1890. doi: 10.3390/polym14091890.
  • Ashogbon AO, Akintayo ET. Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch‐Stärke. 2014;66(1–2):41–57. doi: 10.1002/star.201300106.
  • Alyarnezhad S, Marino T, Parsa JB, et al. Polyvinylidene fluoride-graphene oxide membranes for dye removal under visible light irradiation. Polymers (Basel). 2020;12(7):1509. doi: 10.3390/polym12071509.
  • Junaidi N, Khalil N, Jahari A, et al. Effect of graphene oxide (GO) on the surface morphology & hydrophilicity of polyethersulfone (PES). IOP Conf Ser: Mater Sci Eng. 2018;358:012047. doi: 10.1088/1757-899X/358/1/012047.
  • Mahmoud KA, Mansoor B, Mansour A, et al. Functional graphene nanosheets: the next generation membranes for water desalination. Desalination. 2015;356:208–225. doi: 10.1016/j.desal.2014.10.022.
  • Zare EN, Motahari A, Sillanpää M. Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res. 2018;162:173–195. doi: 10.1016/j.envres.2017.12.025.
  • Nasar A, Mashkoor F. Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environ Sci Pollut Res Int. 2019;26(6):5333–5356. doi: 10.1007/s11356-018-3990-y.
  • Mylkie K, Nowak P, Rybczynski P, et al. Polymer-coated magnetite nanoparticles for protein immobilization. Materials. 2021;14(2):248. doi: 10.3390/ma14020248.
  • Shahriary L, Athawale AA. Graphene oxide synthesized by using modified hummers approach. Int J Renew Energy Environ Eng. 2014;02:58–63.
  • Marczenko Z, Freiser H. Spectrophotometric determination of trace elements. Crit Rev Anal Chem. 1981;11:195–260.
  • Sofla RLM, Rezaei M, Babaie A. Investigation of the effect of graphene oxide functionalization on the physical, mechanical and shape memory properties of polyurethane/reduced graphene oxide nanocomposites. Diamond Relat Mater. 2019;95:195–205. doi: 10.1016/j.diamond.2019.04.012.
  • Katowah DF, Rahman MM, Hussein MA, et al. Ternary nanocomposite based poly (pyrrole-co-O-toluidine), cobalt ferrite and decorated chitosan as a selective Co2+ cationic sensor. Composites Part B: Engineering. 2019;175:107175. doi: 10.1016/j.compositesb.2019.107175.
  • Wan Ishak WH, Ahmad I, Ramli S, et al. Gamma irradiation-assisted synthesis of cellulose nanocrystal-reinforced gelatin hydrogels. Nanomaterials. 2018;8(10):749. doi: 10.3390/nano8100749.
  • Chia M-R, Ahmad I, Phang S-W. Starch/polyaniline biopolymer film as potential intelligent food packaging with colourimetric ammonia sensor. Polymers (Basel). 2022;14(6):1122. doi: 10.3390/polym14061122.
  • Chiang J-C, MacDiarmid AG. Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synth Met. 1986;13(1–3):193–205. doi: 10.1016/0379-6779(86)90070-6.
  • Ping Z. In situ FTIR–attenuated total reflection spectroscopic investigations on the base–acid transitions of polyaniline. Base–acid transition in the emeraldine form of polyaniline. J Chem Soc, Faraday Trans. 1996;92(17):3063–3067. doi: 10.1039/FT9969203063.
  • Ibrahim NI, Wasfi AS. A comparative study of polyaniline/MWCNT with polyaniline/SWCNT nanocomposite films synthesized by microwave plasma polymerization. Synth Met. 2019;250:49–54. doi: 10.1016/j.synthmet.2019.02.007.
  • Quillard S, Louarn G, Lefrant S, et al. Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev B Condens Matter. 1994;50(17):12496–12508. doi: 10.1103/physrevb.50.12496.
  • Yang J, Wang X, Wang X, et al. Preparation of highly conductive CNTs/polyaniline composites through plasma pretreating and in-situ polymerization. J Phys Chem Solids. 2010;71(4):448–452. doi: 10.1016/j.jpcs.2009.12.008.
  • Sharma AK, Chaudhary G, Kaushal I, et al. Studies on nanocomposites of polyaniline using different substrates. Am J Polym Sci. 2015;1:1–6.
  • Mazzeu MAC, Faria LK, Baldan MR, et al. Influence of reaction time on the structure of polyaniline synthesized on a pre-pilot scale. Braz J Chem Eng. 2018;35(1):123–130. doi: 10.1590/0104-6632.20180351s20160201.
  • Yavuz AG, Uygun A, Bhethanabotla VR. Substituted polyaniline/chitosan composites: synthesis and characterization. Carbohydr Polym. 2009;75(3):448–453. doi: 10.1016/j.carbpol.2008.08.005.
  • Nepomuceno N, Seixas A, Medeiros E, et al. Evaluation of conductivity of nanostructured polyaniline/cellulose nanocrystals (PANI/CNC) obtained via in situ polymerization. J Solid State Chem. 2021;302:122372. doi: 10.1016/j.jssc.2021.122372.
  • Nazarzadeh ZE, Najafi MP, Azariyan E, et al. Conductive and biodegradable polyaniline/starch blends and their composites with polystyrene. Iran Polym J. 2011;2:319–328.
  • Dresselhaus MS, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes. Phys Rep. 2005;409(2):47–99. doi: 10.1016/j.physrep.2004.10.006.
  • Kumar Sharma A, Bhardwaj P, Kumar Dhawan S, et al. Oxidative synthesis and electrochemical studies of poly (aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor. Adv Mater Lett. 2015;6(5):414–420. doi: 10.5185/amlett.2015.5690.
  • Khan A, Khan A, Asiri A, et al. Surfactant-assisted graphene oxide/methylaniline nanocomposites for lead ionic sensor development for the environmental remediation in real sample matrices. Int J Environ Sci Technol. 2019;16(12):8461–8470. doi: 10.1007/s13762-019-02447-8.
  • Savitha P, Sathyanarayana D. Copolymers of aniline with o‐and m‐toluidine: synthesis and characterization. Polym Int. 2004;53(1):106–112. doi: 10.1002/pi.1316.
  • Luo J, Shen P, Yao W, et al. Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites. Nanoscale Res Lett. 2016;11(1):141. doi: 10.1186/s11671-016-1340-x.
  • Wu T-M, Lin Y-W, Liao C-S. Preparation and characterization of polyaniline/multi-walled carbon nanotube composites. Carbon. 2005;43(4):734–740. doi: 10.1016/j.carbon.2004.10.043.
  • Katowah DF, Mohammed GI, Al‐Eryani DA, et al. Fabrication of conductive cross‐linked polyaniline/G‐MWCNTS core‐shell nanocomposite: a selective sensor for trace determination of chlorophenol in water samples. Polym Adv Technol. 2020;31(11):2615–2631. doi: 10.1002/pat.4988.
  • Katowah DF, Saleh SM, Alqarni SA, et al. Network structure-based decorated CPA@ CuO hybrid nanocomposite for methyl orange environmental remediation. Sci Rep. 2021;11(1):5056. doi: 10.1038/s41598-021-84540-y.
  • Katowah DF, Hussein MA, Alam M, et al. Poly (pyrrole-co-o-toluidine) wrapped CoFe 2 O 4/R (GO–OXSWCNTs) ternary composite material for Ga 3+ sensing ability. RSC Adv. 2019;9(57):33052–33070. doi: 10.1039/c9ra03593a.
  • Katowah DF, Hussein MA, Alam M, et al. Selective fabrication of an electrochemical sensor for Pb2+ based on poly (pyrrole‐co‐o–toluidine)/CoFe2O4 nanocomposites. ChemistrySelect. 2019;4(35):10609–10619. doi: 10.1002/slct.201902714.
  • Sureshkumar V, Kiruba Daniel S, Ruckmani K, et al. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Appl Nanosci. 2016;6(2):277–285. doi: 10.1007/s13204-015-0429-3.
  • Guibal E. Interactions of metal ions with chitosan-based sorbents: a review. Sep Purif Technol. 2004;38(1):43–74. doi: 10.1016/j.seppur.2003.10.004.
  • Kamran U, Bhatti HN, Noreen S, et al. Chemically modified sugarcane bagasse-based biocomposites for efficient removal of acid red 1 dye: kinetics, isotherms, thermodynamics, and desorption studies. Chemosphere. 2022;291(Pt 2):132796. doi: 10.1016/j.chemosphere.2021.132796.
  • Salam MA, Gabal M, Al Angari Y. The recycle of spent Zn–C batteries and the synthesis of magnetic nanocomposite from graphene nanosheets and ferrite and its application for environmental remediation. J Mater Res Technol. 2022;18:4267–4276. doi: 10.1016/j.jmrt.2022.04.112.
  • Zhang J-W, Mariska S, Van HT, et al. Synthesis of titanate nanotubes/layered double hydroxides/graphene oxide composites and applications for the removal of methylene blue, methylene green 5, and acid red 1 from aqueous solutions. Inorg Chem Commun. 2023;152:110723. doi: 10.1016/j.inoche.2023.110723.
  • Saratale RG, Saratale GD, Chang J-S, et al. Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng. 2011;42(1):138–157. doi: 10.1016/j.jtice.2010.06.006.
  • Ko SH, Lee D, Kang HW, et al. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 2011;11(2):666–671. doi: 10.1021/nl1037962.
  • Długosz M, Żmudzki P, Kwiecień A, et al. Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst. J Hazard Mater. 2015;298:146–153. doi: 10.1016/j.jhazmat.2015.05.016.
  • Gong J-L, Wang B, Zeng G-M, et al. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater. 2009;164(2–3):1517–1522. doi: 10.1016/j.jhazmat.2008.09.072.
  • Mattoso L, Manohar S, MacDiarmid A, et al. Studies on the chemical syntheses and on the characteristics of polyaniline derivatives. J Polym Sci A Polym Chem. 1995;33(8):1227–1234. doi: 10.1002/pola.1995.080330805.
  • Liu Y, Zeng G, Tang L, et al. Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon. J Colloid Interface Sci. 2015;448:451–459. doi: 10.1016/j.jcis.2015.02.037.
  • Dastgheib SA, Rockstraw DA. A systematic study and proposed model of the adsorption of binary metal ion solutes in aqueous solution onto activated carbon produced from pecan shells. Carbon. 2002;40(11):1853–1861. doi: 10.1016/S0008-6223(02)00036-2.
  • Palágyi S, Braun T. Separation and preconcentration of trace elements and inorganic species on solid polyurethane foam sorbents. In Preconcentration techniques for trace elements. United States: CRC Press; 1992. p. 363–400.
  • Weber W, Morris J. Kinetics of adsorption on carbon from solution. J. Sanit. Engrg. Div. 1963;89(2):31–59. doi: 10.1061/JSEDAI.0000430.
  • Dalal R. Desorption of soil phosphate by anion‐exchange resin. Commun Soil Sci Plant Anal. 1974;5(6):531–538. doi: 10.1080/00103627409366531.
  • Bhattacharya AK, Venkobachar C. Removal of cadmium (II) by low cost adsorbents. J. Environ. Eng. 1984;110(1):110–122. doi: 10.1061/(ASCE)0733-9372(1984)110:1(110).
  • El-Shahawi M, Othman M, Abdel-Fadeel M. Kinetics, thermodynamic and chromatographic behaviour of the uranyl ions sorption from aqueous thiocyanate media onto polyurethane foams. Anal Chim Acta. 2005;546(2):221–228. doi: 10.1016/j.aca.2005.05.018.
  • Gabal M, Al-Zahrani N, Al Angari Y, et al. CoFe2O4/MWCNTs nano-composites structural, thermal, magnetic, electrical properties and dye removal capability. Mater Res Express. 2019;6(10):105059. doi: 10.1088/2053-1591/ab3b88.
  • Al-Saidi H, Abdel-Fadeel M, El-Sonbati A, et al. Multi-walled carbon nanotubes as an adsorbent material for the solid phase extraction of bismuth from aqueous media: kinetic and thermodynamic studies and analytical applications. J Mol Liq. 2016;216:693–698. doi: 10.1016/j.molliq.2016.01.086.
  • Al-Saidi HM, Abdel-Fadeel MA, Alharthi SS. Preconcentration and ultrasensitive spectrophotometric estimation of tungsten in soils using polyurethane foam in the presence of rhodamine B: kinetic and thermodynamic studies, and designing a simple automated preconcentration system. J Saudi Chem Soc. 2021;25(8):101301. doi: 10.1016/j.jscs.2021.101301.
  • Braun T, Navratil JD, Farag A. Polyurethane foam sorbents in separation science. United States: CRC Press; 2018.
  • Salam MA, Mohamed RM. Removal of antimony (III) by multi-walled carbon nanotubes from model solution and environmental samples. Chem Eng Res Des. 2013;91(7):1352–1360. doi: 10.1016/j.cherd.2013.02.007.
  • Salam MA, Lateefa A, Abdel-Fadeel MA. Removal of toxic ammonium ions from water using nanographene sheets. DWT. 2018;129:168–176. doi: 10.5004/dwt.2018.23085.
  • Hameed SA, Abdel-Fadeel MA, Al-Saidi HM, et al. Simultaneous removal of the toxic tungsten ions and rhodamine B dye by graphene nanosheets from model and real water. DWT. 2020;188:266–276. doi: 10.5004/dwt.2020.25348.