1,055
Views
0
CrossRef citations to date
0
Altmetric
Review Article

New advances in diagnosis and treatment of nano drug delivery systems across the blood-brain barrier

ORCID Icon, , , , & ORCID Icon
Pages 116-127 | Received 14 May 2023, Accepted 02 Sep 2023, Published online: 20 Sep 2023

References

  • Furtado D, Björnmalm M, Ayton S, et al. Overcoming the Blood-Brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018;30(46):e1801362. doi: 10.1002/adma.201801362.
  • Zhou X, Smith QR, Liu X. Brain penetrating peptides and peptide-drug conjugates to overcome the blood-brain barrier and target CNS diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(4):e1695. doi: 10.1002/wnan.1695.
  • Yin W, Zhao Y, Kang X, et al. BBB-penetrating codelivery liposomes treat brain metastasis of non-small cell lung cancer with EGFR(T790M) mutation. Theranostics. 2020;10(14):6122–6135. doi: 10.7150/thno.42234.
  • Poustforoosh A, Nematollahi MH, Hashemipour H, et al. Recent advances in bio-conjugated nanocarriers for crossing the blood-brain barrier in (pre-) clinical studies with an emphasis on vesicles. J Control Release. 2022;343:777–797. doi: 10.1016/j.jconrel.2022.02.015.
  • Zhang Y, Yang D, Nie J, et al. Transcranial non-genetic neuromodulation via bioinspired vesicle-enabled precise NIR-II optical-stimulation. Adv Mater. 2022;2022:e2208601.
  • Xie Y, Ye L, Zhang X, et al. Transport of nerve growth factor encapsulated into liposomes across the blood-brain barrier: in vitro and in vivo studies. J Control Release. 2005;105(1–2):106–119. doi: 10.1016/j.jconrel.2005.03.005.
  • Sztandera K, Gorzkiewicz M, Klajnert-Maculewicz B. Gold nanoparticles in cancer treatment. Mol Pharm. 2019;16(1):1–23. doi: 10.1021/acs.molpharmaceut.8b00810.
  • Llenas M, Sandoval S, Costa PM, et al. Microwave-assisted synthesis of SPION-reduced graphene oxide hybrids for magnetic resonance imaging (MRI). Nanomaterials. 2019;9(10):1364. doi: 10.3390/nano9101364.
  • Kaur S, Silveira Fiates AL, Rezwan K, et al. Monometallic and bimetallic SiC(O) ceramic with Ni, Co and/or Fe nanoparticles for catalytic applications. Nanocomposites. 2022;8(1):194–203. doi: 10.1080/20550324.2022.2106396.
  • Li S, Peng Z, Dallman J, et al. Crossing the blood-brain-barrier with transferrin conjugated carbon dots: a zebrafish model study. Colloids Surf B Biointerfaces. 2016;145:251–256. doi: 10.1016/j.colsurfb.2016.05.007.
  • Huang N, Cheng S, Zhang X, et al. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedicine. 2017;13(1):83–93. doi: 10.1016/j.nano.2016.08.029.
  • Barani M, Mukhtar M, Rahdar A, et al. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections. Molecules. 2021;26(1):186. doi: 10.3390/molecules26010186.
  • Israel LL, Galstyan A, Cox A, et al. Signature effects of vector-guided systemic nano bioconjugate delivery across blood-brain barrier of normal, Alzheimer’s, and tumor mouse models. ACS Nano. 2022;16(8):11815–11832. doi: 10.1021/acsnano.1c10034.
  • DAS SS, Bharadwaj P, Bilal M, et al. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers. 2020;12(6):1397. doi: 10.3390/polym12061397.
  • Sireesha M, Jagadeesh Babu V, Kranthi Kiran AS, et al. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites. 2018;4(2):36–57. doi: 10.1080/20550324.2018.1478765.
  • Joseph A, Nance E. Nanotherapeutics and the brain. Annu Rev Chem Biomol Eng. 2022;13(1):325–346. doi: 10.1146/annurev-chembioeng-092220-030853.
  • Shirvalilou S, Khoei S, Khoee S, et al. Enhancement radiation-induced apoptosis in C6 glioma tumor-bearing rats via pH-responsive magnetic graphene oxide nanocarrier. J Photochem Photobiol B. 2020;205:111827. doi: 10.1016/j.jphotobiol.2020.111827.
  • Kargar S, Khoei S, Khoee S, et al. Evaluation of the combined effect of NIR laser and ionizing radiation on cellular damages induced by IUdR-loaded PLGA-coated nano-graphene oxide. Photodiagnosis Photodyn Ther. 2018;21:91–97. doi: 10.1016/j.pdpdt.2017.11.007.
  • Abdel Hady M, Sayed OM, Akl MA. Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: formulation; optimization and in-vivo evaluation. Colloids Surf B Biointerfaces. 2020;193:111076. doi: 10.1016/j.colsurfb.2020.111076.
  • Rinaldi F, Oliva A, Sabatino M, et al. Antimicrobial essential oil formulation: chitosan coated nanoemulsions for nose to brain delivery. Pharmaceutics. 2020;12(7):678. doi: 10.3390/pharmaceutics12070678.
  • MENDONçA MC, Soares ES, DE Jesus MB, et al. PEGylation of reduced graphene oxide induces toxicity in cells of the blood-brain barrier: an in vitro and in vivo study. Mol Pharm. 2016;13(11):3913–3924. doi: 10.1021/acs.molpharmaceut.6b00696.
  • Zhong G, Long H, Zhou T, et al. Blood-brain barrier permeable nanoparticles for Alzheimer’s disease treatment by selective mitophagy of microglia. Biomaterials. 2022;288:121690. doi: 10.1016/j.biomaterials.2022.121690.
  • Li X, Yang Y, Zhao H, et al. Enhanced in vivo blood-brain barrier penetration by circular Tau-transferrin receptor bifunctional aptamer for Tauopathy therapy. J Am Chem Soc. 2020;142(8):3862–3872. doi: 10.1021/jacs.9b11490.
  • Kuplennik N, Lang K, Steinfeld R, et al. Folate receptor α-modified nanoparticles for targeting of the central nervous system. ACS Appl Mater Interfaces. 2019;11(43):39633–39647. doi: 10.1021/acsami.9b14659.
  • Garcia-Caceres C, Quarta C, Varela L, et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell. 2016;166(4):867–880. doi: 10.1016/j.cell.2016.07.028.
  • Storck SE, Meister S, Nahrath J, et al. Endothelial LRP1 transports amyloid-β(1-42) across the blood-brain barrier. J Clin Invest. 2016;126(1):123–136. doi: 10.1172/JCI81108.
  • Gartziandia O, Egusquiaguirre SP, Bianco J, et al. Nanoparticle transport across in vitro olfactory cell monolayers. Int J Pharm. 2016;499(1–2):81–89. doi: 10.1016/j.ijpharm.2015.12.046.
  • Fan Y, Cui Y, Hao W, et al. Carrier-free highly drug-loaded biomimetic nanosuspensions encapsulated by cancer cell membrane based on homology and active targeting for the treatment of glioma. Bioact Mater. 2021;6(12):4402–4414. doi: 10.1016/j.bioactmat.2021.04.027.
  • Qian Y, Qiao S, Dai Y, et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017;11(9):9536–9549. doi: 10.1021/acsnano.7b05465.
  • Xiao H, Guo Y, Li B, et al. M2-like tumor-associated macrophage-targeted codelivery of STAT6 inhibitor and IKKbeta siRNA induces M2-to-M1 repolarization for cancer immunotherapy with low immune side effects. ACS Cent Sci. 2020;6(7):1208–1222. doi: 10.1021/acscentsci.9b01235.
  • Cieslewicz M, Tang J, Yu JL, et al. Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc Natl Acad Sci USA. 2013;110(40):15919–15924. doi: 10.1073/pnas.1312197110.
  • Ngambenjawong C, Cieslewicz M, Schellinger JG, et al. Synthesis and evaluation of multivalent M2pep peptides for targeting alternatively activated M2 macrophages. J Control Release. 2016;224:103–111. doi: 10.1016/j.jconrel.2015.12.057.
  • Yao Y, Wang J, Liu Y, et al. Variants of the adeno-associated virus serotype 9 with enhanced penetration of the blood-brain barrier in rodents and primates. Nat Biomed Eng. 2022;6(11):1257–1271. doi: 10.1038/s41551-022-00938-7.
  • Liu Y, Hu P, Zheng Z, et al. Photoresponsive vaccine-like CAR-M system with high-efficiency central immune regulation for inflammation-related depression. Adv Mater. 2022;34(11):e2108525. doi: 10.1002/adma.202108525.
  • Cao H, Dan Z, He X, et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer. ACS Nano. 2016;10(8):7738–7748. doi: 10.1021/acsnano.6b03148.
  • Chen Q, Zhang XH, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 2011;20(4):538–549. doi: 10.1016/j.ccr.2011.08.025.
  • Bahmani B, Gong H, Luk BT, et al. Intratumoral immunotherapy using platelet-cloaked nanoparticles enhances antitumor immunity in solid tumors. Nat Commun. 2021;12(1):1999. doi: 10.1038/s41467-021-22311-z.
  • Wang Z, Zhang M, Chi S, et al. Brain tumor cell membrane-coated lanthanide-doped nanoparticles for NIR-IIb luminescence imaging and surgical navigation of glioma. Adv Healthc Mater. 2022;11(16):e2200521. doi: 10.1002/adhm.202200521.
  • Mo J, Chen X, Li M, et al. Upconversion nanoparticle-based cell membrane-coated cRGD peptide bioorthogonally labeled nanoplatform for glioblastoma treatment. ACS Appl Mater Interfaces. 2022;14(44):49454–49470. doi: 10.1021/acsami.2c11284.
  • Liu L, Bai X, Martikainen MV, et al. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat Commun. 2021;12(1):5726. doi: 10.1038/s41467-021-26052-x.
  • Su J, Yao ZP, Chen ZX, et al. TfR aptamer enhanced blood-brain barrier penetration of biomimetic nanocomplexes for intracellular transglutaminase 2 imaging and silencing in glioma. Small. 2022;18(40):e2203448. doi: 10.1002/smll.202203448.
  • Niu W, Xiao Q, Wang X, et al. A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett. 2021;21(3):1484–1492. doi: 10.1021/acs.nanolett.0c04753.
  • Wu T, Liu Y, Cao Y, et al. Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma. Adv Mater. 2022;34(15):e2110364. doi: 10.1002/adma.202110364.
  • Sharma G, Modgil A, Sun C, et al. Grafting of cell-penetrating peptide to receptor-targeted liposomes improves their transfection efficiency and transport across blood-brain barrier model. J Pharm Sci. 2012;101(7):2468–2478. doi: 10.1002/jps.23152.
  • Solomon M, Loeck M, Silva-Abreu M, et al. Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases. J Control Release. 2022;349:1031–1044. doi: 10.1016/j.jconrel.2022.07.022.
  • Sun P, Xiao Y, DI Q, et al. Transferrin receptor-targeted PEG-PLA polymeric micelles for chemotherapy against glioblastoma multiforme. Int J Nanomedicine. 2020;15:6673–6688. doi: 10.2147/IJN.S257459.
  • Wiley DT, Webster P, Gale A, et al. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci USA. 2013;110(21):8662–8667. doi: 10.1073/pnas.1307152110.
  • Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci USA. 2015;112(40):12486–12491. doi: 10.1073/pnas.1517048112.
  • Alam C, Aufreiter S, Georgiou CJ, et al. Upregulation of reduced folate carrier by vitamin D enhances brain folate uptake in mice lacking folate receptor alpha. Proc Natl Acad Sci USA. 2019;116(35):17531–17540. doi: 10.1073/pnas.1907077116.
  • Lu L, Shen X, Tao B, et al. The nanoparticle-facilitated autophagy inhibition of cancer stem cells for improved chemotherapeutic effects on glioblastomas. J Mater Chem B. 2019;7(12):2054–2062. doi: 10.1039/c8tb03165g.
  • Luiz MT, Viegas JSR, Abriata JP, et al. Docetaxel-loaded folate-modified TPGS-transfersomes for glioblastoma multiforme treatment. Mater Sci Eng C Mater Biol Appl. 2021;124:112033. doi: 10.1016/j.msec.2021.112033.
  • Oller-Salvia B, Sánchez-Navarro M, Giralt E, et al. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem Soc Rev. 2016;45(17):4690–4707. doi: 10.1039/c6cs00076b.
  • Lin T, Zhao P, Jiang Y, et al. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano. 2016;10(11):9999–10012. doi: 10.1021/acsnano.6b04268.
  • Zhu H, Ren F, Wang T, et al. Targeted immunoimaging of tumor-associated macrophages in orthotopic glioblastoma by the NIR-IIb nanoprobes. Small. 2022;18(30):e2202201. doi: 10.1002/smll.202202201.
  • Xie J, Shen Z, Anraku Y, et al. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials. 2019;224:119491. doi: 10.1016/j.biomaterials.2019.119491.
  • He W, Li X, Morsch M, et al. Brain-targeted codelivery of Bcl-2/Bcl-xl and Mcl-1 inhibitors by biomimetic nanoparticles for orthotopic glioblastoma therapy. ACS Nano. 2022;16(4):6293–6308. doi: 10.1021/acsnano.2c00320.
  • Batrakova EV, Gendelman HE, Kabanov AV. Cell-mediated drug delivery. Expert Opin Drug Deliv. 2011;8(4):415–433. doi: 10.1517/17425247.2011.559457.
  • Xu M, Feng T, Liu B, et al. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics. 2021;11(18):8926–8944. doi: 10.7150/thno.62330.
  • SI X L, FANG Y J, LI L F, et al. From inflammasome to Parkinson’s disease: Does the NLRP3 inflammasome facilitate exosome secretion and exosomal alpha-synuclein transmission in Parkinson’s disease?.Exp Neurol, 2021;336:113525. doi: 10.1016/j.expneurol.2020.113525.