653
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Role of the intercalated ions on the high capacitance behavior of Ti3C2Tx MXene nanohybrids

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 128-137 | Received 31 Dec 2022, Accepted 02 Sep 2023, Published online: 12 Sep 2023

References

  • Zhang Y, Liu J, Li S-L, et al. Polyoxometalate-based materials for sustainable and clean energy conversion and storage. Energy Chem. 2019;1:100021. doi: 10.1016/j.enchem.2019.100021.
  • Ghosh T, Koneru B, Banerjee P. Artificial intelligence for energy conversion. Appl Artificial Intell New Mater Discovery. 2023;147:123–138.
  • Koneru B, Swapnalin J, Natarajan S, et al. Investigation of the ion dynamics by a particular excitation due to the stoichiometric imbalances on BiFeO3 ceramics. Physica B. 2023;649:414463. doi: 10.1016/j.physb.2022.414463.
  • Zhang B-W, Wang Y-X, Chou S-L, et al. Fabrication of superior single-atom catalysts toward diverse electrochemical reactions. Small Methods. 2019;3:1800497. doi: 10.1002/smtd.201800497.
  • Koneru B, Swapnalin J, Natarajan S, et al. Intercalation of nanoscale multiferroic spacers between the two-dimensional interlayers of MXene. ACS Omega. 2022;7:20369–20375. doi: 10.1021/acsomega.2c02471.
  • Swapnalin J, Koneru B, Pothu R, et al. Surface modification of Ti3C2Tx using terminal groups and heteroatoms with excellent electrochemical performance in supercapacitors. Appl Phys Lett. 2023;122:161902. doi: 10.1063/5.0142053.
  • Kumar JA, Prakash P, Krithiga T, et al. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere. 2022;286:131607. doi: 10.1016/j.chemosphere.2021.131607.
  • Burdanova MG, Liu M, Staniforth M, et al. Intertube excitonic coupling in nanotube Van der waals heterostructures. Adv Funct Mater. 2022;32:2104969. doi: 10.1002/adfm.202104969.
  • Hu M, Zhang H, Hu T, et al. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev. 2020;49:6666–6693. doi: 10.1039/d0cs00175a.
  • Chao H, Qin H, Zhang M, et al. Boosting the pseudocapacitive and high mass-loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets. Adv Funct Mater. 2021;31:2007636. doi: 10.1002/adfm.202007636.
  • Wang C, Yang H, Wang B, et al. Dual cation doping enabling simultaneously boosted capacity and rate capability of MnO2 cathodes for Zn//MnO2 batteries. Nano Res. 2023;16:9488–9495. doi: 10.1007/s12274-023-5717-8.
  • Tang R, Xiong S, Gong D, et al. Ti3c2 2d MXene: recent progress and perspectives in photocatalysis. ACS Appl Mater Interfaces. 2020;12:56663–56680. doi: 10.1021/acsami.0c12905.
  • Zuo G, Wang Y, Teo WL, et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angewandte Chemie. 2020;132:11383–11388. doi: 10.1002/ange.202002136.
  • Zhang H, Fang Y, Yang F, et al. Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage. Energy Environ Sci. 2020;13:2515–2523. doi: 10.1039/D0EE01723J.
  • Swapnalin J, Koneru B, Boddula R, et al. 2D nanomaterials as lubricant additives. In: Nadda AK, Nguyen TA, Sharma S, Bilal M, Gupta RK, editors. Nanotechnology for Advanced Biofuels. Elsevier; 2023. p. 97–112.
  • Wyatt BC, Nemani SK, Desai K, et al. High-temperature stability and phase transformations of titanium carbide (Ti3C2Tx) MXene. J. Phys. 2021;33:224002. doi: 10.1088/1361-648X/abe793.
  • Liu Y, Jiang Y, Hu Z, et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv Funct Mater. 2021;31:2008033. doi: 10.1002/adfm.202008033.
  • Pu L, Zhang J, Kuate Loic Jiresse N, et al. N-doped mxene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Mater. 2022;5:356–369. doi: 10.1007/s42114-021-00371-5.
  • Lu C, Li A, Zhai T, et al. Interface design based on Ti3C2 MXene atomic layers of advanced battery-type material for supercapacitors. Energy Storage Mater. 2020;26:472–482. doi: 10.1016/j.ensm.2019.11.021.
  • Zhong Q, Li Y, Zhang G. Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem Eng J. 2021;409:128099. doi: 10.1016/j.cej.2020.128099.
  • VahidMohammadi A, Moncada J, Chen H, et al. Thick and freestanding mxene/pani pseudocapacitive electrodes with ultrahigh specific capacitance. J Mater Chem A. 2018;6:22123–22133. doi: 10.1039/C8TA05807E.
  • El-Hallag IS, El-Nahass MN, Youssry SM, et al. Facile in-situ simultaneous electrochemical reduction and deposition of reduced graphene oxide embedded palladium nanoparticles as high performance electrode materials for supercapacitor with excellent rate capability. Electrochim Acta. 2019;314:124–134. doi: 10.1016/j.electacta.2019.05.065.
  • Leng L, Xu S, Liu R, et al. Nitrogen containing functional groups of biochar: an overview. Bioresour Technol. 2020;298:122286. doi: 10.1016/j.biortech.2019.122286.
  • Li Y, Cao C-F, Li S-N, et al. In situ reactive self-assembly of a graphene oxide nano-coating in polymer foam materials with synergistic fire shielding properties. J Mater Chem A. 2019;7:27032–27040. doi: 10.1039/C9TA09372A.
  • Li L, Zhang Y-N, Zhou Y, et al. Optical fiber optofluidic bio-chemical sensors: a review. Laser Photon Rev. 2021;15:2000526. doi: 10.1002/lpor.202000526.
  • Peng L, Zhu Y, Chen D, et al. Two-dimensional materials for beyond-lithium-ion batteries. Adv Energy Mater. 2016;6:1600025. doi: 10.1002/aenm.201600025.
  • Wen Y, Rufford TE, Chen X, et al. Nitrogen-doped Ti3C2Tx mxene electrodes for high-performance supercapacitors. Nano Energy. 2017;38:368–376. doi: 10.1016/j.nanoen.2017.06.009.
  • Jiang Q, Lei Y, Liang H, et al. Review of MXene electrochemical microsupercapacitors. Energy Storage Mater. 2020;27:78–95. doi: 10.1016/j.ensm.2020.01.018.
  • Li X, Huang Z, Zhi C. Environmental stability of MXenes as energy storage materials. Front Mater. 2019;6:312. doi: 10.3389/fmats.2019.00312.
  • Zhu Q, Li J, Simon P, et al. Two-dimensional mxenes for electrochemical capacitor applications: progress, challenges and perspectives. Energy Storage Mater. 2021;35:630–660. doi: 10.1016/j.ensm.2020.11.035.
  • Meng W, Liu X, Song H, et al. Advances and challenges in 2d mxenes: from structures to energy storage and conversions. Nano Today. 2021;40:101273. doi: 10.1016/j.nantod.2021.101273.
  • Mathis TS, Maleski K, Goad A, et al. Modified max phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano. 2021;15:6420–6429. doi: 10.1021/acsnano.0c08357.
  • Natu V, Pai R, Sokol M, et al. 2d Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem. 2020;6:616–630. doi: 10.1016/j.chempr.2020.01.019.
  • Zhang H, Wang Z, Shen Y, et al. Ultrathin 2d Ti3C2Tx MXene membrane for effective separation of oil-in-water emulsions in acidic, alkaline, and salty environment. J Colloid Interface Sci. 2020;561:861–869. doi: 10.1016/j.jcis.2019.11.069.
  • Lv Z, Ma W, Wang M, et al. Co-constructing interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3d self-supporting electrode for ultraefficient electrocatalytic her in alkaline media. Adv Funct Mater. 2021;31:2102576. doi: 10.1002/adfm.202102576.
  • Lv L-P, Guo C-F, Sun W, et al. Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium–sulfur batteries. Small. 2019;15:e1804338. doi: 10.1002/smll.201804338.
  • Hu Y, Pang S, Yang G, et al. MXene modified carbon fiber composites with improved mechanical properties based on electrophoretic deposition. Mater Res Bull. 2022;150:111761. doi: 10.1016/j.materresbull.2022.111761.
  • Shi H, Zhang CJ, Lu P, et al. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium–metal anodes. ACS Nano. 2019;13:14308–14318. doi: 10.1021/acsnano.9b07710.
  • Bao W, Liu L, Wang C, et al. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv Energy Mater. 2018;8:1702485. doi: 10.1002/aenm.201702485.
  • Shuck CE, Han M, Maleski K, et al. Effect of Ti3AlC2 max phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl Nano Mater. 2019;2:3368–3376. doi: 10.1021/acsanm.9b00286.
  • Meshkian R, Tao Q, Dahlqvist M, et al. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater. 2017;125:476–480. doi: 10.1016/j.actamat.2016.12.008.
  • Feng A, Yu Y, Wang Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of ti3alc2. Mater Design. 2017;114:161–166. doi: 10.1016/j.matdes.2016.10.053.
  • Li Z, Wang L, Sun D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Mater Sci Eng B. 2015;191:33–40. doi: 10.1016/j.mseb.2014.10.009.
  • Zhi W, Xiang S, Bian R, et al. Study of MXene-filled polyurethane nanocomposites prepared via an emulsion method. Compos Sci Technol. 2018;168:404–411. doi: 10.1016/j.compscitech.2018.10.026.
  • Sun Y, Xu D, Li S, et al. Assembly of multidimensional MXene-carbon nanotube ultrathin membranes with an enhanced anti-swelling property for water purification. J Membr Sci. 2021;623:119075. doi: 10.1016/j.memsci.2021.119075.
  • Wei B, Fu Z, Legut D, et al. Rational design of highly stable and active MXene-based bifunctional ORR/OER double-atom catalysts. Adv Mater. 2021;33:2102595. doi: 10.1002/adma.202102595.
  • Pathak M, Sekhar Rout C. Hierarchical NiCo2S4 nanostructures anchored on nanocarbons and Ti3C2Tx mxene for high-performance flexible solid-state asymmetric supercapacitors. Adv Compos Hybrid Mater. 2022;5:1404–1422. doi: 10.1007/s42114-022-00466-7.
  • Vadym NB, Mochalin VN, Gogotsi Y. Bending rigidity of two-dimensional titanium carbide (mxene) nanoribbons: a molecular dynamics study. Comput Mater Sci. 2018;143:418–424.
  • Hu M, Hu T, Li Z, et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano. 2018;12:3578–3586. doi: 10.1021/acsnano.8b00676.
  • Yu T, Li S, Zhang L, et al. In situ growth of ZIF-67-derived nickel-cobalt-manganese hydroxides on 2d V2CTx MXene for dual-functional orientation as high-performance asymmetric supercapacitor and electrochemical hydroquinone sensor. J Colloid Interface Sci. 2022;629:546–558. doi: 10.1016/j.jcis.2022.09.107.
  • Aguedo J, Lorencova L, Barath M, et al. Electrochemical impedance spectroscopy on 2d nanomaterial MXene modified interfaces: application as a characterization and transducing tool. Chemosensors. 2020;8:127. doi: 10.3390/chemosensors8040127.
  • Yoon S-B, Jegal J-P, Chul Roh K, et al. Electrochemical impedance spectroscopic investigation of sodium ion diffusion in MnO2 using a constant phase element active in desired frequency ranges. J Electrochem Soc. 2014;161:H207–H213. doi: 10.1149/2.046404jes.
  • Ji B, Fan S, Kou S, et al. Microwave absorption properties of multilayer impedance gradient absorber consisting of Ti3C2Tx MXene/polymer films. Carbon. 2021;181:130–142. doi: 10.1016/j.carbon.2021.05.018.
  • Shen C, Wang L, Zhou A, et al. Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites. Nanomaterials. 2018;8:80. doi: 10.3390/nano8020080.
  • Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013;341:1502–1505. doi: 10.1126/science.1241488.