562
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling of modulus and strength in void-containing clay platelet/cellulose nanocomposites by unit cell approach

ORCID Icon & ORCID Icon
Pages 138-147 | Received 02 Dec 2022, Accepted 02 Oct 2023, Published online: 27 Oct 2023

References

  • Berglund LA, Peijs T. Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull. 2010;35(3):201–207. doi:10.1557/mrs2010.652.
  • Montanari C, Olsén P, Berglund LA. Sustainable wood nanotechnologies for wood composites processed by in-situ polymerization. Front Chem. 2021;9(483):682883. doi:10.3389/fchem.2021.682883.
  • Liu A, Walther A, Ikkala O, et al. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules. 2011;12(3):633–641. doi:10.1021/bm101296z.
  • Launey ME, Munch E, Alsem DH, et al. A novel biomimetic approach to the design of high-performance ceramic–metal composites. J R Soc Interface. 2010;7(46):741–753. doi:10.1098/rsif.2009.0331.
  • Barthelat F. Architectured materials in engineering and biology: fabrication, structure, mechanics and performance. Int Mater Rev. 2015;60(8):413–430. doi:10.1179/1743280415Y.0000000008.
  • Barthelat F, Yin Z, Buehler MJ. Structure and mechanics of interfaces in biological materials. Nat Rev Mater. 2016;1(4):16007. doi:10.1038/natrevmats.2016.7.
  • Ritchie RO. The conflicts between strength and toughness. Nat Mater. 2011;10(11):817–822. doi:10.1038/nmat3115.
  • Hou Y, Guan Q-F, Xia J, et al. Strengthening and toughening hierarchical nanocellulose via humidity-mediated interface. ACS Nano. 2021;15(1):1310–1320. doi:10.1021/acsnano.0c08574.
  • Mathiazhagan S, Anup S. Influence of platelet aspect ratio on the mechanical behaviour of bio-inspired nanocomposites using molecular dynamics. J Mech Behav Biomed Mater. 2016;59:21–40. doi:10.1016/j.jmbbm.2015.12.008.
  • Yvonnet J. Computational homogenization of heterogeneous materials with finite elements. Springer International Publishing; 2019.
  • Hull D, Clyne TW. An introduction to composite materials. Cambridge University Press; 1996.
  • Zhu L, Narh KA. Numerical simulation of the tensile modulus of nanoclay-filled polymer composites. J. Polym. Sci. B Polym. Phys. 2004;42(12):2391–2406. doi:10.1002/polb.20112.
  • Boccaccini AR, Eifler D, Ondracek G. Determination of the young’s modulus of platelet reinforced composite materials. Materials Science and Engineering: a. 1996;207(2):228–233. doi:10.1016/0921-5093(95)10156-X.
  • Barthelat F. Designing nacre-like materials for simultaneous stiffness, strength and toughness: optimum materials, composition, microstructure and size. J Mech Phys Solids. 2014;73:22–37. doi:10.1016/j.jmps.2014.08.008.
  • Barthelat F, Rabiei R. Toughness amplification in natural composites. J Mech Phys Solids. 2011;59(4):829–840. doi:10.1016/j.jmps.2011.01.001.
  • Christensen RM. Mechanics of composite materials. Newburyport: Dover Publications; 2012.
  • Jackson AP, Vincent JFV, Turner RM. The mechanical design of nacre. Proc Roy Soc London B Biol Sci. 1988;234(1277):415–440.
  • Kotha SP, Li Y, Guzelsu N. Micromechanical model of nacre tested in tension. J Mater Sci. 2001;36(8):2001–2007. doi:10.1023/A:1017526830874.
  • Begley MR, Philips NR, Compton BG, et al. Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites. J Mech Phys Solids. 2012;60(8):1545–1560. doi:10.1016/j.jmps.2012.03.002.
  • Ji B, Gao H. Mechanical properties of nanostructure of biological materials. J Mech Phys Solids. 2004;52(9):1963–1990. doi:10.1016/j.jmps.2004.03.006.
  • Gao H, Ji B, Jager IL, et al. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci U S A. 2003;100(10):5597–5600. doi:10.1073/pnas.0631609100.
  • Kim Y, Kim Y, Lee T-I, et al. An extended analytic model for the elastic properties of platelet-staggered composites and its application to 3D printed structures. Compos Struct. 2018;189:27–36. doi:10.1016/j.compstruct.2018.01.038.
  • Karakoç A, Miettinen A, Virkajӓrvi J, et al. Effective elastic properties of biocomposites using 3D computational homogenization and X-ray microcomputed tomography. Compos Struct. 2021;273:114302. doi:10.1016/j.compstruct.2021.114302.
  • Singh A, Sandhu TS, Pal S. Interplay of various fracture mechanisms in bio-inspired staggered structure. Mech Mater. 2019;139:103215. doi:10.1016/j.mechmat.2019.103215.
  • Tan W, Martínez-Pañeda E. Phase field predictions of microscopic fracture and R-curve behaviour of fibre-reinforced composites. Compos Sci Technol. 2021;202:108539. doi:10.1016/j.compscitech.2020.108539.
  • Bui TQ, Hu X. A review of phase-field models, fundamentals and their applications to composite laminates. Eng Fract Mech. 2021;248:107705. doi:10.1016/j.engfracmech.2021.107705.
  • Henriksson M, Berglund LA, Isaksson P, et al. Cellulose nanopaper structures of high toughness. Biomacromolecules. 2008;9(6):1579–1585. doi:10.1021/bm800038n.
  • Mianehrow H, Lo Re G, Carosio F, et al. Strong reinforcement effects in 2D cellulose nanofibril–graphene oxide (CNF–GO) nanocomposites due to GO-induced CNF ordering. J Mater Chem A Mater. 2020;8(34):17608–17620. doi:10.1039/D0TA04406G.
  • Medina L, Nishiyama Y, Daicho K, et al. Nanostructure and properties of nacre-inspired clay/cellulose nanocomposites—synchrotron X-ray scattering analysis. Macromolecules. 2019;52(8):3131–3140. doi:10.1021/acs.macromol.9b00333.
  • Li L, Maddalena L, Nishiyama Y, et al. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix. Carbohydr Polym. 2022;279:119004. doi:10.1016/j.carbpol.2021.119004.
  • Kuang L, Zhu Q, Shang X, et al. Molecular dynamics simulation of nanoscale elastic properties of hydrated Na-, Cs-, and Ca-montmorillonite. Appl Sci. 2022;12(2):678. doi:10.3390/app12020678.
  • Nakamura KI, Wada M, Kuga S, et al. Poisson’s ratio of cellulose I? and cellulose II. J. Polym. Sci. B Polym. Phys. 2004;42(7):1206–1211. doi:10.1002/polb.10771.
  • Song G, Lancelon-Pin C, Chen P, et al. Time-dependent elastic tensor of cellulose nanocrystal probed by hydrostatic pressure and uniaxial stretching. J Phys Chem Lett. 2021;12(15):3779–3785. doi:10.1021/acs.jpclett.1c00576.
  • Molnár G, Rodney D, Martoïa F, et al. Cellulose crystals plastify by localized shear. Proc Natl Acad Sci U S A. 2018;115(28):7260–7265. doi:10.1073/pnas.1800098115.
  • Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Method Appl Mech Eng. 2010;199(45-48):2765–2778. doi:10.1016/j.cma.2010.04.011.
  • Zhang Y, Yu J, Wang X, et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science. 2021;372(6543):706–711. doi:10.1126/science.abf2824.
  • Tavares da Costa MV, Li L, Berglund LA. Fracture properties of thin brittle MTM clay coating on ductile HEC polymer substrate. Mater Design. 2023;230:111947. doi:10.1016/j.matdes.2023.111947.
  • Zhou S, Rabczuk T, Zhuang X. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv Eng Softw. 2018;122:31–49. doi:10.1016/j.advengsoft.2018.03.012.
  • Fang J, Wu C, Rabczuk T, et al. Phase field fracture in elasto-plastic solids: abaqus implementation and case studies. Theor Appl Fract Mech. 2019;103:102252. doi:10.1016/j.tafmec.2019.102252.
  • Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. J Mech Phys Solids. 2000;48(4):797–826. doi:10.1016/S0022-5096(99)00028-9.
  • Mianehrow H, Berglund LA, Wohlert J. Interface effects from moisture in nanocomposites of 2D graphene oxide in cellulose nanofiber (CNF) matrix – a molecular dynamics study. J. Mater. Chem. A. 2022;10(4):2122–2132. doi:10.1039/D1TA09286C.
  • Wang RZ, Suo Z, Evans AG, et al. Deformation mechanisms in nacre. J. Mater. Res. 2001;16(9):2485–2493. doi:10.1557/JMR.2001.0340.