313
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synergistic enhancement of thermal and dielectric properties in PVDF films with Au-BaTiO3 hybrid nanoparticles

, & ORCID Icon
Pages 203-214 | Received 04 Sep 2023, Accepted 01 Dec 2023, Published online: 18 Dec 2023

References

  • Dang Z-M, Yuan J-K, Zha J-W, et al. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci. 2012;57(4):660–723. doi: 10.1016/j.pmatsci.2011.08.001.
  • Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci. 2014;39(4):683–706. doi: 10.1016/j.progpolymsci.2013.07.006.
  • Prateek, Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-Based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev. 2016;116(7):4260–4317. doi: 10.1021/acs.chemrev.5b00495.
  • Ting Y, Suprapto, Chiu C-W. Characteristic analysis of biaxially stretched PVDF thin films. J Appl Polym Sci. 2018;135(36):46677.
  • Tan Q, Irwin P, Cao Y. Advanced dielectrics for capacitors. IEEJ Trans Fundam Mater. 2006;126(11):1153–1159. doi: 10.1541/ieejfms.126.1153.
  • Kum-Onsa P, Chanlek N, Thongbai P. Largely enhanced dielectric properties of TiO2-nanorods/poly(vinylidene fluoride) nanocomposites driven by enhanced interfacial areas. Nanocomposites. 2021;7(1):123–131. doi: 10.1080/20550324.2021.1952371.
  • Meeporn K, Thongbai P. Flexible La1.5Sr0.5NiO4/poly(vinylidene fluoride) composites with an ultra high dielectric constant: a comparative study. Compos Part B Eng. 2020;184:107738. doi: 10.1016/j.compositesb.2019.107738.
  • Zeng Y, Xiong C, Li J, et al. Structural, dielectric and mechanical behaviors of (La, Nb) co-doped TiO2/silicone rubber composites. Ceram Int. 2021;47(16):22365–22372. doi: 10.1016/j.ceramint.2021.04.245.
  • Kaur S, Singh DP. On the structural, dielectric and energy storage behaviour of PVDF- CaCu3Ti4O12 nanocomposite films. Mater Chem Phys. 2020;239:122301. doi: 10.1016/j.matchemphys.2019.122301.
  • Huang X, Jiang P, Xie L. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl Phys Lett. 2009;95(24):242901.
  • Phromviyo N, Chanlek N, Thongbai P, et al. Enhanced dielectric permittivity with retaining low loss in poly(vinylidene fluoride) by incorporating with Ag nanoparticles synthesized via hydrothermal method. Appl Surf Sci. 2018;446:59–65. doi: 10.1016/j.apsusc.2018.02.188.
  • Liu L, Matitsine S, Gan YB, et al. Frequency dependence of effective permittivity of carbon nanotube composites. J Appl Phys. 2007;101(9):094106.
  • Li Q, Xue Q, Zheng Q, et al. Large dielectric constant of the chemically purified carbon nanotube/polymer composites. Mater Lett. 2008;62(26):4229–4231. doi: 10.1016/j.matlet.2008.06.047.
  • Nan CW, Shen Y, Ma J. Physical properties of composites near percolation. Annu Rev Mater Res. 2010;40(1):131–151. doi: 10.1146/annurev-matsci-070909-104529.
  • Ghosh B, Tamayo Calderón RM, Espinoza-González R, et al. Enhanced dielectric properties of PVDF/CaCu3Ti4O12: ag composite films. Mater Chem Phys. 2017;196:302–309. doi: 10.1016/j.matchemphys.2017.05.009.
  • Yang Y, Sun H, Yin D, et al. High performance of polyimide/CaCu3Ti4O12@Ag hybrid films with enhanced dielectric permittivity and low dielectric loss. J Mater Chem A. 2015;3(9):4916–4921. doi: 10.1039/C4TA05673F.
  • Luo S, Yu S, Sun R, et al. Nano Ag-Deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. ACS Appl Mater Interfaces. 2014;6(1):176–182. doi: 10.1021/am404556c.
  • Silakaew K, Chanlek N, Manyam J, et al. Highly enhanced frequency- and temperature-stability permittivity of three-phase poly(vinylidene-fluoride) nanocomposites with retaining low loss tangent and high permittivity. Results Phys. 2021;26:104410. doi: 10.1016/j.rinp.2021.104410.
  • Singh D, Singh N, Garg A, et al. Engineered thiol anchored Au-BaTiO3/PVDF polymer nanocomposite as efficient dielectric for electronic applications. Compos Sci Technol. 2019;174:158–168. doi: 10.1016/j.compscitech.2019.02.015.
  • Kum-Onsa P, Phromviyo N, Thongbai P. Suppressing loss tangent with significantly enhanced dielectric permittivity of poly(vinylidene fluoride) by filling with Au–Na1/2Y1/2Cu3Ti4O12 hybrid particles. RSC Adv. 2020;10(66):40442–40449. doi: 10.1039/d0ra06980a.
  • Kum-Onsa P, Chanlek N, Manyam J, et al. Gold-Nanoparticle-Deposited TiO2 nanorod/poly(vinylidene fluoride) composites with enhanced dielectric performance. Polymers. 2021;13(13):2064. doi: 10.3390/polym13132064.
  • Kum-Onsa P, Chanlek N, Putasaeng B, et al. Improvement in dielectric properties of poly(vinylidene fluoride) by incorporation of Au–BiFeO3 hybrid nanoparticles. Ceram Int. 2020;46(11):17272–17279. doi: 10.1016/j.ceramint.2020.04.014.
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11(0):55–75. doi: 10.1039/df9511100055.
  • Phromviyo N, Thongbai P, Maensiri S. High dielectric permittivity and suppressed loss tangent in PVDF polymer nanocomposites using gold nanoparticle–deposited BaTiO3 hybrid particles as fillers. Appl Surf Sci. 2018;446:236–242. doi: 10.1016/j.apsusc.2018.01.045.
  • Sreejivungsa K, Phromviyo N, Swatsitang E, et al. Characterizations and significantly enhanced dielectric properties of PVDF polymer nanocomposites by incorporating gold nanoparticles deposited on BaTiO3 nanoparticles. Polymers. 2021;13(23):4144. doi: 10.3390/polym13234144.
  • Cai X, Lei T, Sun D, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7(25):15382–15389. doi: 10.1039/C7RA01267E.
  • Ruan L, Yao X, Chang Y, et al. Properties and applications of the β phase poly(vinylidene fluoride). Polymers. 2018;10(3):228. doi: 10.3390/polym10030228.
  • Choi MH, Yang SC. CoFe2O4 nanofiller effect on β-phase formation of PVDF matrix for polymer-based magnetoelectric composites. Mater Lett. 2018;223:73–77. doi: 10.1016/j.matlet.2018.04.024.
  • Mandal D, Henkel K, Schmeißer D. The electroactive β-phase formation in poly(vinylidene fluoride) by gold nanoparticles doping. Mater Lett. 2012;73:123–125. doi: 10.1016/j.matlet.2011.11.117.
  • Low YKA, Tan LY, Tan LP, et al. Increasing solvent polarity and addition of salts promote β-phase poly(vinylidene fluoride) formation. J Appl Polym Sci. 2013;128(5):2902–2910. doi: 10.1002/app.38451.
  • Biswas A, Henkel K, Schmeißer D, et al. Comparison of the thermal stability of the α, β and γ phases in poly(vinylidene fluoride) based on in situ thermal Fourier transform infrared spectroscopy. Phase Transit. 2017;90(12):1–9. doi: 10.1080/01411594.2017.1337902.
  • Zhao Y, Zhou Y, Yang Y, et al. The impact of solvents on properties of solution-cast poly(vinylidene fluoride) films for energy storage. Mater Lett. 2018;219:201–204. doi: 10.1016/j.matlet.2018.02.110.
  • Li X, Wang Y, He T, et al. Preparation of PVDF flexible piezoelectric film with high β-phase content by matching solvent dipole moment and crystallization temperature. J Mater Sci Mater Electron. 2019;30(22):20174–20180.
  • Tao M-M, Liu F, Ma B-R, et al. Effect of solvent power on PVDF membrane polymorphism during phase inversion. Desalination. 2013;316:137–145. doi: 10.1016/j.desal.2013.02.005.
  • Mendes SF, Costa CM, Caparros C, et al. Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J Mater Sci. 2012;47(3):1378–1388. doi: 10.1007/s10853-011-5916-7.
  • Correia DM, Costa CM, Lizundia E, et al. Influence of cation and anion type on the formation of the electroactive β-phase and thermal and dynamic mechanical properties of poly(vinylidene fluoride)/ionic liquids blends. J Phys Chem C. 2019;123(45):27917–27926. doi: 10.1021/acs.jpcc.9b07986.
  • Muduli SP, Parida S, Rout SK, et al. Effect of hot press temperature on β-phase, dielectric and ferroelectric properties of solvent casted poly(vinyledene fluoride) films. Mater Res Exp. 2019;6(9):095306. doi: 10.1088/2053-1591/ab2d85.
  • Bonno B, Laporte JL, d‘León RT. Determination of thermal parameters of PVDF using a photoacoustic technique. Meas Sci Technol. 2001;12(6):671–675. doi: 10.1088/0957-0233/12/6/303.
  • Huang C, Qian X, Yang R. Thermal conductivity of polymers and polymer nanocomposites. Mater Sci Eng R Rep. 2018;132:1–22. doi: 10.1016/j.mser.2018.06.002.
  • Ebadi-Dehaghani H, Nazempour M. Thermal conductivity of nanoparticles filled polymers. Smart Nanoparticles Technol. 2012;23:519–540.
  • Silakaew K, Saijingwong W, Meeporn K, et al. Effects of processing methods on dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites. Microelectron Eng. 2015;146(Supplement C):1–5. doi: 10.1016/j.mee.2015.01.029.
  • Xie L, Huang X, Li B-W, et al. Core–satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss. Phys Chem Chem Phys. 2013;15(40):17560–17569. doi: 10.1039/c3cp52799a.
  • Wang M, Pan X-R, Qi X-D, et al. Fabrication of Ag@BaTiO3 hybrid nanofibers via coaxial electrospinning toward polymeric composites with highly enhanced dielectric performances. Compos Commun. 2020;21:100411. doi: 10.1016/j.coco.2020.100411.
  • Wang Z, Fang M, Li H, et al. Enhanced dielectric properties in poly(vinylidene fluoride) composites by nanosized Ba(Fe0.5Nb0.5)O3 powders. Compos Sci Technol. 2015;117:410–416. doi: 10.1016/j.compscitech.2015.07.018.
  • Hu G, Gao F, Kong J, et al. Preparation and dielectric properties of poly(vinylidene fluoride)/Ba0.6Sr0.4TiO3 composites. J Alloys Compd. 2015;619:686–692. doi: 10.1016/j.jallcom.2014.09.005.
  • Fang F, Yang W, Yu S, et al. Mechanism of high dielectric performance of polymer composites induced by BaTiO3-supporting Ag hybrid fillers. Appl Phys Lett. 2014;104(13):132909.
  • Silakaew K, Thongbai P. Suppressed loss tangent and conductivity in high-permittivity Ag-BaTiO3/PVDF nanocomposites by blocking with BaTiO3 nanoparticles. Appl Surf Sci. 2019;492:683–689. doi: 10.1016/j.apsusc.2019.06.262.
  • Su Y, Gu Y, Li H, et al. Ag-NBCTO-PVDF composites with enhanced dielectric properties. Mater Lett. 2016;185(Supplement C):208–210. doi: 10.1016/j.matlet.2016.08.136.
  • Tuichai W, Kum-Onsa P, Danwittayakul S, et al. Significantly enhanced dielectric properties of Ag-deposited (In1/2Nb1/2)0.1Ti0.9O2/PVDF polymer composites. Polymers. 2021;13(11):1788. doi: 10.3390/polym13111788.
  • Chen X, Liang F, Lu W, et al. Improved dielectric properties of Ag@TiO2/PVDF nanocomposites induced by interfacial polarization and modifiers with different carbon chain lengths. Appl Phys Lett. 2018;112(16):162902.
  • Lopes AC, Costa CM, Serra R, et al. Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. Solid State Ionics. 2013;235:42–50. doi: 10.1016/j.ssi.2013.01.013.
  • Thomas P, Varughese KT, Dwarakanath K, et al. Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos Sci Technol. 2010;70(3):539–545. doi: 10.1016/j.compscitech.2009.12.014.
  • Su Y-L, Sun C, Zhang W-Q, et al. Fabrication and dielectric properties of Na0.5Bi0.5Cu3Ti4O12/poly(vinylidene fluoride) composites. J Mater Sci. 2013;48(23):8147–8152. doi: 10.1007/s10853-013-7627-8.
  • Chen G, Wang X, Lin J, et al. Interfacial polarity modulation of KTa0.5Nb0.5O3 nanoparticles and its effect on dielectric loss and breakdown strength of poly(vinylidene fluoride) nanocomposites with high permittivity. J Phys Chem C. 2016;120(50):28423–28431. doi: 10.1021/acs.jpcc.6b09041.
  • Meeporn K, Thongbai P, Yamwong T, et al. Greatly enhanced dielectric permittivity in La1.7Sr0.3NiO4/poly(vinylidene fluoride) nanocomposites that retained a low loss tangent. RSC Adv. 2017;7(28):17128–17136. doi: 10.1039/C7RA01675A.
  • Dang Z-M, Shen Y, Nan C-W. Dielectric behavior of three-phase percolative Ni–BaTiO3/polyvinylidene fluoride composites. Appl Phys Lett. 2002;81(25):4814–4816. doi: 10.1063/1.1529085.