566
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Scalable and passive carbon nanotube thin-film sensor for detecting micro-strains and potential impact damage in fiber-reinforced composite materials

, , , , , , , & show all
Pages 215-230 | Received 29 Aug 2023, Accepted 01 Dec 2023, Published online: 14 Dec 2023

References

  • Zagainov GI, Lozino-Lozinski GE. Composite materials in aerospace design. Vol. 6. Cham: Springer Science & Business Media, 1996.
  • Kossakowski PG, Wciślik W. Fiber-reinforced polymer composites in the construction of bridges: opportunities, problems and challenges. Fibers. 2022;10(4):37. doi: 10.3390/fib10040037.
  • Fujino Y, Siringoringo DM, Ikeda Y, et al. Research and implementations of structural monitoring for bridges and buildings in Japan. Engineering. 2019;5(6):1093–1119. doi: 10.1016/j.eng.2019.09.006.
  • Svendsen BT, Frøseth GT, Øiseth O, et al. A data-based structural health monitoring approach for damage detection in steel bridges using experimental data. J Civil Struct Health Monit. 2022;12(1):101–115. doi: 10.1007/s13349-021-00530-8.
  • Ahmed H, Nasrazadani S, Ju S. Review paper on harsh environmental structural health monitoring. Int J Sci Res Eng Trends. 2021;7:2304–2314.
  • Kumar R, Hossain A. Experimental performance and study of low power strain gauge based wireless sensor node for structure health monitoring. Wireless Pers Commun. 2018;101(3):1657–1669. doi: 10.1007/s11277-018-5782-6.
  • Tochaei EN, Fang Z, Taylor T, et al. Structural monitoring and remaining fatigue life estimation of typical welded crack details in the Manhattan bridge. Engineering Structures. 2021;231:111760. doi: 10.1016/j.engstruct.2020.111760.
  • Zymelka D, Togashi K, Kobayashi T. Concentric array of printed strain sensors for structural health monitoring. Sensors. 2020;20(7):1997. doi: 10.3390/s20071997.
  • Obitayo W, Liu T. A review: carbon nanotube-based piezoresistive strain sensors. Journal of Sensors. 2012;2012:1–15. doi: 10.1155/2012/652438.
  • Saxena S, Srivastava AK, Thomas S, et al. Carbon nanotube-based sensors and their application. In: Thomas S, Grohens Y, Vignaud G, Kalarikkal N, James J, editors. Nano-optics. Amsterdam: Elsevier, 2020. p. 265–291. doi: 10.1016/B978-0-12-818392-2.00010-X.
  • Li Q W, Li Y, Zhang X F, et al. Structure-dependent electrical properties of carbon nanotube fibers. Adv Mat. 2007;19(20):3358–3363. doi: 10.1002/adma.200602966.
  • Danish M, Luo S. A new route to enhance the packing density of buckypaper for superior piezoresistive sensor characteristics. Sensors. 2020;20(10):2904. doi: 10.3390/s20102904.
  • Yu MF, Lourie O, Dyer MJ, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287(5453):637–640. doi: 10.1126/science.287.5453.637.
  • Luo S, Liu T. SWCNT/graphite nanoplatelet hybrid thin films for self-temperature-compensated, highly sensitive, and extensible piezoresistive sensors. Adv Mater. 2013;25(39):5650–5657. doi: 10.1002/adma.201301796.
  • Bai Y, Lin D, Wu F, et al. Adsorption of triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions. Chemosphere. 2010;79(4):362–367. doi: 10.1016/j.chemosphere.2010.02.023.
  • Rojas JA, Ardila-Rodríguez LA, Diniz MF, et al. Optimization of triton X-100 removal and ultrasound probe parameters in the preparation of multiwalled carbon nanotube buckypaper. Materials & Design. 2019;166:107612. doi: 10.1016/j.matdes.2019.107612.
  • DeGraff J, Liang R, Le MQ, et al. Printable low-cost and flexible carbon nanotube buckypaper motion sensors. Materials & Design. 2017;133:47–53. doi: 10.1016/j.matdes.2017.07.048.
  • Banna AH, Kayang KW, Volkov AN. Effects of the nanotube length and network morphology on the deformation mechanisms and mechanical properties of cross-linked carbon nanotube films. J Appl Phys. 2021;129(10):105101. doi: 10.1063/5.0033442.
  • Park JG, Louis J, Cheng Q, et al. Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology. 2009;20(41):415702. doi: 10.1088/0957-4484/20/41/415702.
  • Horne G, Liang Z. Systems and methods for continuous manufacture of buckypaper materials. 2018. https://www.freepatentsonline.com/9909259.html.
  • ASTM International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. https://www.astm.org/d0790-17.html.
  • ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event. https://www.astm.org/d7136_d7136m-15.html.
  • Yang H, Yuan L, Yao X, et al. Monotonic strain sensing behavior of self-assembled carbon nanotubes/graphene silicone rubber composites under cyclic loading. Compos Sci Technol. 2020;200:108474. doi: 10.1016/j.compscitech.2020.108474.
  • Jin L, Chortos A, Lian F, et al. Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors. Proc Natl Acad Sci U S A. 2018;115(9):1986–1991. doi: 10.1073/pnas.1717217115.
  • Zhang H, Bilotti E, Peijs T. The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review. Nanocomposites. 2015;1(4):167–184. doi: 10.1080/20550324.2015.1113639.
  • Kanoun O, Bouhamed A, Ramalingame R, et al. Review on conductive polymer/CNTs nanocomposites based flexible and stretchable strain and pressure sensors. Sensors. 2021;21(2):341. doi: 10.3390/s21020341.
  • Rasathi S, Geetha K, Ilavarasi R, et al. Experimental investigation for gauge factor of carbon nanotube strain sensor. Int J Res Eng Sci. 2022;10:40–45.
  • Chen C, Chu F, Zhang Y, et al. Fabricating flexible strain sensor with direct writing graphene/carbon nanotube aerogel. ACS Appl Electron Mater. 2023;5(3):1429–1436. doi: 10.1021/acsaelm.2c01338.
  • Min S-H, Lee G-Y, Ahn S-H. Direct printing of highly sensitive, stretchable, and durable strain sensor based on silver nanoparticles/multi-walled carbon nanotubes composites. Compos B Eng. 2019;161:395–401. doi: 10.1016/j.compositesb.2018.12.107.
  • Roh E, Hwang B-U, Kim D, et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano. 2015;9(6):6252–6261. doi: 10.1021/acsnano.5b01613.
  • Zhang X, Xiang D, Wu Y, et al. High-performance flexible strain sensors based on biaxially stretched conductive polymer composites with carbon nanotubes immobilized on reduced graphene oxide. Compos A Appl Sci Manuf. 2021;151:106665. doi: 10.1016/j.compositesa.2021.106665.
  • Xiang D, Zhang X, Harkin-Jones E, et al. Synergistic effects of hybrid conductive nanofillers on the performance of 3D printed highly elastic strain sensors. Compos A Appl Sci Manuf. 2020;129:105730. doi: 10.1016/j.compositesa.2019.105730.
  • Cortés A, Sánchez-Romate XF, Jiménez-Suárez A, et al. Mechanical and strain-sensing capabilities of carbon nanotube reinforced composites by digital light processing 3D printing technology. Polymers. 2020;12(4):975. doi: 10.3390/polym12040975.