5,430
Views
0
CrossRef citations to date
0
Altmetric
Review

Repair of thermoplastic composites: an overview

ORCID Icon, , &

References

  • Sloan J. The first composite fuselage section for the first composite commercial jet. 2018. [cited 2021 Feb 22]; Available from: https://www.compositesworld.com/articles/the-first-composite-fuselage-section-for-the-first-composite-commercial-jet.
  • Marsh G. Airbus A350 XWB update. Composite applications 2010. [cited 2021 Feb 22]; Available from: https://www.materialstoday.com/composite-applications/features/airbus-a350-xwb-update/#.:∼:text = In%20fact%2C%20the%20billed%2053,steel%20and%208%25%20other%20materials.
  • Macdonald JP. Bombardier Aerospace granted authority to offer CSeries aircraft to customers. 2005. [cited 2021 Feb 22]; Available from: https://bombardier.com/en/media/news/bombardier-aerospace-granted-authority-offer-cseries-aircraft-customers-0?page=0&category=All&year=2005&month=3.
  • Ingen JW, et al. Development of the gulfstream G650 induction welded thermoplastic elevators and rudder. SAMPE. Seattle, WA; 2010.
  • Partnering the aircraft of the future. 2019. [cited 2021 Feb 22]; Available from: https://www.gknaerospace.com/en/newsroom/downloadable-materials/.
  • Gardiner G. Thermoplastic composite demonstrators - EU roadmap for future airframes. Processes 2018. Available from: https://www.compositesworld.com/articles/thermoplastic-composite-demonstrators-eu-roadmap-for-future-airframes-.
  • Sloan J. TAPAS 2: next steps in thermoplastic structures. High performance composites. Cincinnati, Ohio; 2014.
  • Sloan J. Fokker aerostructures: Hoogeveen, The Netherlands. 2015. [cited 2021 Feb 23]; Available from: https://www.compositesworld.com/articles/fokker-aerostructures-hoogeveen-the-netherlands.
  • TAPAS. 2021. About us. [cited 2021 Aug 2]; Available from: http://www.tapasproject.nl/en/about-us.
  • Black S. Thermoplastic composites "clip" time, labor on small but crucial parts. 2015. [cited 2021 Sept 9]; Available from: https://www.compositesworld.com/articles/thermoplastic-composites-clip-time-labor-on-small-but-crucial-parts.
  • Black S. Composite brackets for life-of-aircraft service. 2015. [cited 2021 Sept 9]; Available from: https://www.compositesworld.com/articles/composite-brackets-for-life-of-aircraft-service.
  • Gregory H, and Taylor E. Bombardier announces £70 million in supplier contracts to support wing production in Northern Ireland. Aviation 2011. [cited 2021 Sept 9]; Available from: https://bombardier.com/en/media/news/bombardier-announces-ps70-million-supplier-contracts-support-wing-production-northern.
  • PEEK aerospace bracket for Bombardier aircraft drive down manufacturing costs 2015. [cited 2021 Sept 9]; Available from: https://www.plasticstoday.com/peek-aerospace-brackets-bombardier-aircraft-drive-down-manufacturing-costs.
  • Gardiner G. Thermoplastic composites: Inside story. 2009. [cited 2022 Jan 10]; Available from: https://www.compositesworld.com/articles/thermoplastic-composites-inside-story.
  • Gardiner G. Aerospace-grade compression molding. Thermoplastics 2010. [cited 2022]; Available from: https://www.compositesworld.com/articles/aerospace-grade-compression-molding.
  • Hautier M, Lévêque D, and Huchette C, et al. Investigation of composite repair method by liquid resin infiltration. Plast Rubber Compos. 2010; 39(3–5) :200–207.
  • Yousefpour A, Hojjati M, and Immarigeon J-P. Fusion bonding/welding of thermoplastic composites. J Thermoplast Compos Mater. 2004;17(4):303–341.
  • Ong C-L, Sheu M-F, and Liou Y-Y. The repair of thermoplastic composites after impact. 34th international SAMPE symposium. Reno, Nevada; 1989.
  • Stokes VK. Joining methods fors plastics and plastic composites. Polym Eng Sci. 1989; 29(19) :1310–1324.
  • Mathijsen D. Thermoplastic composites keep gaining momentum in the automotive industry. Reinf Plast. 2016; 60(6) :408–412.
  • Ishikawa T, Amaoka K, Masubuchi Y, et al. Overview of automotive structural composites technology developments in Japan. Compos Sci Technol. 2018; 155 :221–246.
  • Gardiner G. Carbon fiber will enable air taxi eVTOLs. Urban Air Mobility 2019. [cited 2021 Sept 21]; Available from: https://www.compositesworld.com/articles/carbon-fiber-will-enable-air-taxi-evtols.
  • Red C. Thermoplastics in aerospace composites outlook. Thermoplastics 2014. [cited 2021 Sept 21]; Available from: https://www.compositesworld.com/articles/the-outlook-for-thermoplastics-in-aerospace-composites-2014-2023.
  • Mallick PK. Fiber-reinforced composites: materials. In: Manufacturing, and design. 3rd ed. Dearborn, MI: C. Press; 2007.
  • Anonymous. Email exchange - cost of repair vs. replacement of aircraft structures. In: Barroeta Robles J, editor. Montreal, QC; 2021.
  • Silverman EM, and Griese RA. Joining methods for graphite/peek thermoplastic composites. Sampe J. 1989; 25(5) :34–38.
  • Ageorges C, Ye L, and Hou M. Advances in fusion bonding techniques for joining thermoplastic matrix composites: a review. Compos Part A. 2000; 32 :239–857.
  • Ageorges, C. and L. Ye, Fusion bonding of polymer composites: from basic mechanisms to process optimisation engineering materials and processes. London: Springer; 2002.
  • Todd SM, and Michelove Leon D, et al. Joining thermoplastic composites. 22nd International SAMPE Technical Conference. Boston, MA, USA; 1990. p. 383–392.
  • Grefe H, et al. Fusion bonding of fiber reinforced thermoplastics and thermosets. ECCM17 - 17th european conference on composite materials. Munich, Germany; 2016. p. 1–9.
  • Benatar A, and Gutowski TG. Methods for fusion bonding of thermoplastic composites. SAMPE J. 1987; 23(1) :33–39.
  • Reis JP, Moura MD, and Samborski S. Thermoplastic composites and their promising applications in joining and repair composites structures: a review. Materials. 2020; 13(24) :5832–5833.
  • Xiao X, Hoa SV, and Street KN. Repair of thermoplastic resin composite by fusion bonding. Philadelphia, PA: American Society for Testing and Materials; 1994.
  • Vodicka R. Thermoplastic for airframe applications: a review of the properties and repair methods for thermoplastic composites. United States: Aeronautical and Maritime Research Laboratory; 1996.
  • Campbell FC. Chapter 1 - introduction, in manufacturing technology for aerospace structural materials. In: Campbell FC, editor. Oxford: Elsevier Science; 2006. p. 1–13.
  • Baker A, Dutton S, and Kelly D. 1.5 Matrices. In: Composite materials for aircraft structures. 2nd ed. Reston, VA: American Institute of Aeronautics and Astronautics (AIAA); 2004.
  • Park S-J, and Seo M-K. Chapter 6 - Element and processing. In: S.-J. Park and M.-K. Seo, editors. Interface science and technology. Oxford, UK: Elsevier; 2011. p. 431–499.
  • Bibin J, and Nair CPR. 13 - Syntactic foams. In: Dodiuk H and Goodman SH, editors. Handbook of thermoset plastics. 3rd ed. Boston: William Andrew Publishing; 2014. p. 511–554.
  • Campbell FC. Chapter 3 - thermoset resins: the glue that holds the strings together. In: Manufacturing processes for advanced composites. In: Campbell FC, editor. Elsevier Science: Amsterdam; 2004. p. 63–101.
  • Shimp DA. Speciality matrix resins. In: Peters ST, editor. Handbook of composites. Boston, MA: Springer US; 1998. p. 99–114.
  • Guenthner A, Yandek G, and Mabry J. Insights into moisture uptake and processability from new cyanate ester monomer and blend studies. CA, USA: Air Force Research Laboratory; 2010
  • AMC 20-29 effective: annex II to ED decision - composite aircraft structure. 2010.
  • Preau M. Defect management in vacuum bag only semipreg processing of co-bonded composite repairs. In: Mechanical engineering. Montreal, Quebec: McGill University; 2016.
  • Seipel JD. Policy statement: Bonded repair size limits. 2014. Federal Aviation Administration: USA.
  • Larson ER. 3 - Understanding thermoplastics. In: Larson ER, editor. Thermoplastic material selection. Oxford, UK: William Andrew Publishing; 2015 p. 57–95.
  • Wypych G. PEEK polyetheretherketone. In: Wypych G, editor. Handbook of polymers. 2012. Elsevier: Oxford. p. 353–358.
  • Wypych G. PEKK polyetherketoneketone. In: Wypych G, editor. Handbook of polymers. 2012. Elsevier: Oxford. p. 367–369.
  • Wypych G. 2015. Handbook of polymers. In: Wypych G, editor. Elsevier: Oxford; 2012. p. 511–515.
  • Wypych G. PEI poly(ether imide). In: Wypych G, editor. Handbook of polymers. Elsevier: Oxford; 2012. p. 359–363.
  • Black S. Thermoplastic composites technology: a view from Europe. CompositesWorld. Cincinnati, OH: Gardner Business Media Inc.; 2015. [cited 2021 Sept 29]; Available from: https://www.compositesworld.com/articles/thermoplastic-composites-technology-a-view-from-europe.
  • Huo W, Zhang W. Advanced composite materials defects/damages and health monitoring, in Prognostics and System Health Management Conference. Beijing; 2012.
  • CMH17: PMC's materials usage design and analysis. In: rev G, Wichita, KS: SAE International. CMH-17. 2014.
  • Dubinskiy S. A study of accidental impact scenarios for composite wing damage tolerance evaluations. Aeronaut J. 2019;123(1268):1724–1739.
  • Sauer C. Lufthansa perspective on applications and field experiences for composite airframe structures. In: Comercial aircraft composite repair committee. (CACRC) Meeting; 2007; Wichita, KS.
  • Ilcewicz L, Cheng L, Hafenricher J. Guidelines for the development of a critical composite maintenance and repair issues awareness course. In: Administration FA, editor. Washington, DC: 2009.
  • Kim J. Damaged composite aircraft structure due to lighting strike. 2022.
  • Collombet F, et al. 10 - Repairing composites. In: Boisse P, editor. Advances in composites manufacturing and process design. Cambridge, UK: Woodhead Publishing; 2015. p. 197–227.
  • Service Difficulty Reports. Data Downloads 2021. [cited 2021 May 21]; Available from: https://av-info.faa.gov/dd_sublevel.asp?Folder=%5CSDRS.
  • Raju IS, O'Brien TK. Fracture mechanics concepts, stress fields, strain energy release rates, delamination initiation, and growth criteria. In: U. NASA-Langley Research Centre, editor. Delamination behaviour of composites. 2008. Cambridge, UK: Woodhead Publishing Series in Composites Science and Engineering.
  • Wronkowicz-Katunin A. A brief review on NDT&E methods for structural aircraft components. Fatigue Aircr Struct. 2018;2018(10):73–81.
  • Aircraft inspection for the general aviation aircraft owner. 1978. U.S Department of Transportation.
  • Guide to aircraft inspections. 2021. [cited 2021 Sept 10]; Available from: https://www.aopa.org/go-fly/aircraft-and-ownership/maintenance-and-inspections/aircraft-inspections.
  • EASA. EASA Proposed CM-S-005 Issue 01 - Bonded repair size limits in accordance with CS-23, CS-28, CS-27, CS-29 and AMC 20-29 - Comment response document; 2015.
  • Davis MJ. A rigorous approach to certification of adhesive bonded repairs. In: FAA workshop on certification of adhesive bonded structures and repairs. MIL HDBK 17 Meeting; 2004; Seattle WA.
  • AIR-100. Bonded repair size limits. In: Policy statement. Washington, DC: Federal Aviation Administration; 2014.
  • Wang CH, Duong CN. Chapter 4 - Design of scarf and doubler-scarf joints. In: Bonded joints and repairs to composite aiframe structures. London, UK: Academic Press; 2016.
  • Anonymous. Personal communications on the repair of thermoset and thermoplastic composites. Robles JB, editor. Montréal, QC; 2021.
  • Archer E, McIlhagger A. 14 - Repair of damaged aerospace composite structures, in polymer composites in the aerospace industry. Irving PE and Soutis C, editors. Kidlington, UK: Woodhead Publishing; 2015. p. 393–412.
  • Tomblin JS, et al. Effects of repair procedures on bonded repairs of airframe structures. 2017. Wichita, KS: The U.S. Department of Transporation/Federal Aviation Administrator.
  • Davis M, Tomblin J. Best practice in adhesive-bonded structures and repairs. Wichita, KS: Federal aviation administration. National Technical Information Services; 2007.
  • Seneviratne WP, Tomblin JS, Saathoff BL. Influence of various surface preparation techniques on resistance welded and adhesively bonded unidirectional thermoplastic composite joints. SAMPE Conference Proceedings; 2021 May 24–27; Long Beach, CA; SAMPE.
  • Baker A. Development of a hard-patch approach for scarf repair of composite structure. In: Defence science and technology organisation document control data. Australia: Air Vehicles Division, DSTO Defence Science and Technology Organisation; 2006.
  • Armstrong KB, Bevan LG, Cole WF. 9.3.6 Room-temperature wet lay-up. In: Care and repair of advanced composites. 2nd ed. Warrendale, PA: SAE International; 2005.
  • Armstrong KB, Bevan LG, Cole WF. 9.3.8 Pre-preg repairs. In: Care and repair of advanced composites. 2nd ed. Warrendale, PA: SAE International; 2005.
  • Jones JS, Graves SR. Repair techniques for celion/LARC-160 graphite/polyimide composite structures. Report NC, editor. Contractor Report, Downey, CA: Rockwell International; 1984.
  • Wang CH, Gunnion AJ. Optimum shapes for minimising bond stress in scarf repairs. Aust J Mech Eng. 2008;6(2):153–158.
  • Darwish FH, Shivakumar KN. Experimental and analytical modeling of scarf repaired composite panels. Mech Adv Mater Struct. 2014;21(3):207–212.
  • Olajide SO, Kandare E, Khatibi AA. Fatigue life uncertainty of adhesively bonded composite scarf joints - an airworthiness perspective. J Adhes. 2017; 93(7) :515–530.
  • Armstrong KB, Bevan LG, Cole WF. 9.1 Component identification. In: Care and repair of advanced composites. 2nd ed. Warrendale, PA: SAE International; 2005.
  • Bishopp J. Chapter 4 surface pretreatment for structural bonding. In: Cognard P, editor. Handbook of adhesives and sealants. Oxford, UK: Elsevier Science Ltd; 2005. p. 163–214.
  • Kutz M. Chapter 26 - Plastics joining. In: Applied plastics engineering handbook: Processing, materials, and applications. 2nd ed. Oxford, UK: Elsevier; 2017.
  • Davies P, Courty C, Xanthopoulos N, et al. Surface treatment for adhesive bonding of carbon fibre-Poly(etherether ketone) composites. J Mater Sci Lett. 1991;10(6):335–338.
  • Krieg KL, et al. Structural adhesive bonding of thermoplastics. SAMPE Conference Proceedings; 2014 June 2–5; Seattle, WA. SAMPE.
  • Russell AJ, Ferguson JS. Composite repair issues on the CF-18 aircraft. 79th meeting of the AGARD structures and materials panel. 1994. Seville, Spain.
  • Rodgers B, Mallon PJ. Part II: Repair of thermoplastic composites using induction heating. In: S Trans Tech Publications Ltd, editor. Key Engineering Materials: Materials for Advanced Technology Applications. Composites Manufacturing Research Unit, University of Limerick: Switzerland; 1992.
  • Davies P, Cantwell WJ, Jar P-Y, et al. Joining and repair of a carbon fibre-reinforced thermoplastic. Composites. 1991;22(6):425–431.
  • Stein BA. Rapid adhesive bonding and field repair of aerospace materials. USA: NASA-Langley Research Centre; 1986.
  • Clark EC, Cressy KD. Field repair compounds for thermoset and thermoplastic composites. In: ICBT '86: Proceedings of the international workshop on ionized cluster beam technique. Covina, CA, USA: SAMPE; 1987.
  • Cogswell FN, et al. Thermoplastic interlayer bonding for aromatic polymer composites. 34th International SAMPE Symposium 1989.
  • Cochran R, Gunther G. Recorder's report. Composite repair of military aircraft structures. AGARD Conference Proceedings, Seville, Spain; 1995. p. 550.
  • Kinloch AJ, Kodokian GKA, Watts JF. Relationships between the surface free energies and surface chemical compositions of thermoplastic fibre composites and adhesive joint strengths. J Mater Sci Lett. 1991;10(14):815–818.
  • Kim YH, Wool RP. A theory of healing at a polymer-polymer interface. Macromolecules. 1983;16(7):1115–1120.
  • Wool RP, O’Connor KM. A theory crack healing in polymers. J Appl Phys. 1981;52(10):5953–5963.
  • Yang F, Pitchumani R. Healing of thermoplastic polymers at an interface under nonisothermal conditions. Macromolecules. 2002;35(8):3213–3224.
  • Ageorges C. Characteristics of resistance welding of lap shear coupons. Part I: heat transfer. Composites Part A. 1998;29A:899–909.
  • Gennes PGd. Reptation of a polymer chain in the presence of fixed obstacles. The Journal of Chemical Physics. 1971;55(572):572–579.
  • Loos AC, Dara PH. Processing of thermoplastic matrix composites. Boston, MA: Springer US; 1987.
  • Jud K, Kausch HH, Williams JG. Fracture mechanics studies of crack healing and welding of polymers. J Mater Sci. 1981;16(1):204–210.
  • Prager S, Tirrell M. The healing process at polymer-polymer interfaces. J Chem Phys. 1981;75(10):5194–5198.
  • Wedgewood R. and Hardy PE. Induction welding of thermoset composite adherends using thermoplastic interlayers and dusceptors. 28th International SAMPE Technical Conference; 1996 Nov. 4–7. p. 850–861.
  • Ahmed TJ, Stavrov D, Bersee HEN, et al. Induction welding of thermoplastic composites - an overview. Compos Part A Appl Sci Manuf. 2006;37(10):1638–1651.,
  • Rudolf R, Mitschang P, Neitzel M. Induction heating of continuous carbon-fibre-reinforced thermoplastics. Compos Part A Appl Sci Manuf. 2000;31(11):1191–1202.
  • Mitschang P, Rudolf R, Neitzel M. Continuous induction welding process, modelling and realisation. J Thermoplast Compos Mater. 2002;15(2):127–153.
  • Yarlagadda S, Kim HJ, Gillespie JW, et al. A study on the induction heating of conductive fibre reinforced composites. J Compos Mater. 2002;36(4):401–421.
  • Lin W, Miller AK, Baneman O. Predictive capabilities of an induction heating model for complex-shape graphite fiber/polymer matrix composites. 24th International SAMPE Technical Conference; 1992 Oct 20–22; Toronto, Canada. SAMPE.
  • Lawless GW, Reinhart TJ. A study of the induction heating of organic composites. Interim Report. Ohio: University of Dayton and Wright Laboratories, Material Directorate; 1992.
  • Seneviratne W, et al. Induction heating analysis validation of CF/PEKK laminates with magnetic flux controller. SAMPE Conference Proceedings; 2021 May 24–27; Long Beach, CA. SAMPE. p. 1–13.
  • Coey JMD. Applications of soft magnets. In: Magnetism and magnetic materials. Cambridge: Cambridge University Press; 2010. p. 439–463.
  • Martin RG, Johansson C, Tavares JR, et al. Material selection methodology for an induction welding magnetic susceptor based on hysteresis losses. Adv Eng Mater. 2022;24(3):2100877.
  • Villegas IF, Moser L, Yousefpour A, et al. Process and performance evaluation of ultrasonic, induction and resistance welding of advanced thermoplastic composites. J Thermoplast Compos Mater. 2013;26(8):1007–1024.
  • Rahim NAA, et al. In-situ monitoring and control of induction welding in thermoplastic composites using high definition fiber optic sensors. The Composites and Advanced Materials Expo, CAMX. Anaheim, CA; 2019.
  • Mahdi S, Kim H-J, Gama BA, et al. A comparison of oven-cured and induction-cured adhesively bonded composite joints. J Compos Mater. 2003;37(6):519–542.
  • Lionetto F, Pappadà S, Buccoliero G, et al. Finite element modeling of continuous induction welding of thermoplastic matrix composites. Mater Des. 2017; 120 :212–221.
  • Miller A, et al. The nature of induction heating in graphite-fiber, polymer-matrix composite materials. Sampe J. 1990; 26 :37–54.
  • Fink BK, McCullough RL, Gillespie JW. A local theory of heating in cross‐ply carbon fiber thermoplastic composites by magnetic induction. Polym Eng Sci. 2004;32(5):357–369.
  • Fink BK, McCullough RL, W.G J. Jr, Induction heating of carbon-fiber composites: Electrical potential distribution model. Aberdeen Proving Ground, MD: Army Research Laboratory; 1999.
  • Becker S, Michel M, Mitschang P, et al. Influence of polymer matrix on the induction heating behavior of CFRPC laminates. Compos Part B. 2022;231:109561–109515.
  • Moser L. Experimental analysis and modeling of susceptorless induction welding of high performance thermoplastic polymer composites. Institut für Verbundwerkstoffe GmbH: Germany; 2012.
  • Duhovic M, et al. Further advances in simulating the processing of composite materials by electromagnetic induction in 13th International LS-DYNA Users Conference. 2014.
  • Bensaid S, Trichet D, Fouladgar J. 3-D simulation of induction heating of anisotropic composite materials. IEEE Trans Magn. 2005;41(5):1568–1571.
  • O'Shaughnessey PG, Dubé M, Villegas IF. Modeling and experimental investigation of induction welding of thermoplastic composites and comparison with other welding processes. J Compos Mater. 2016;50(21):2895–2910.
  • Gardiner G. Welding thermoplastic composites. 2018. [cited 2022 March 11]; Available from: https://www.compositesworld.com/articles/welding-thermoplastic-composites
  • Vaur R. Développement de méthodes de réparation des composites à matrice thermoplastique utilisant le soudage par induction, in génie méchanique. Montreal, QC: École de Technologie Supérieure; 2015.
  • Côté N. Réparation de composites à matrice thermoplastique en utilisant la soudure par induction. Génie mécanique. Montreal, QC: École de Technologie Supérieure; 2018.
  • Ageorges C, Ye L, Hou M. Experimental investigation of the resistance welding of thermoplastic-matrix composites. Part II: optimum processing window and mechanical performance. Compos Sci Technol. 2000;60(8):1191–1202.
  • Brassard D, Dubé M, Tavares JR. Resistance welding of thermoplastic composites with a nanocomposite heating elements. Compos Part B. 2019; 165 :779–784.
  • Yousefpour A, Octeau M-A. Resistance welding of thermoplastic composites. Canada: National Research Council Canada; 2005.
  • Endrass M, et al. Towards continuous resistance welding for full-scale aerospace components in SAMPE Europe. Amsterdam: SAMPE Europe; 2020.
  • Yousefpour A, Simard M, Octeau MA. Effects of mesh size on resistance welding of thermoplastic composites using metal mesh heating elements. Paris: SAMPE Europe; 2004.
  • Yousefpour A. Process optimization of resistance-welded thermoplastic composites using metal mesh heating elements. SAMPE, Long Beach, California, USA; 2005.
  • Ageorges C, Ye L, Hou M. Experimental investigation of the resistance welding for thermoplastic matrix composites part I: heating element and heat transfer. Compos Sci Technol. 2000;60(7):1027–1039.
  • Stavrov D, Bersee H. Resistance welding of thermoplastic composites - an overview. Compos Part A Appl Sci Manuf. 2005;36(1):39–54.
  • Dubé M, Hubert P, Yousefpour A, et al. Current leakage prevention in resistance welding of carbon fibre reinforced thermoplastics. Compos Sci Technol. 2008;68(6):1579–1587.
  • Dube M. Static and fatigue behaviour of thermoplastic composite laminates joined by resistance welding. Department of mechanical engineering, McGill University, Montreal, QC. 2007.
  • Jakobsen TB, Don RC, W.G J. Jr, Two-Dimensional thermal analysis of resistance welded thermoplastic composites. Polym Eng Sci. 1989;29(23):1722–1729.
  • Xiao XR, Hoa SV, Street KN. Processing and modelling of resistance welding of APC-2 composite. J Compos Mater. 1992;26(7):1031–1049.
  • Ageorges C, Ye L, Hou M. Characteristics of resistance welding of lap shear coupons. Part II: consolidation. Compos Part A. 1998;98:1359–1835.
  • Talbot É, Hubert P, Dubé M, et al. Optimization of thermoplastic composites resistance welding parameters based on transient heat transfer finite element modeling. J Thermoplast Compos Mater. 2013;26(5):699–717.
  • Zammar I, Huq MS, Mantegh I, et al. A three-dimensional transient model for heat transfer in thermoplastic composites during continuous resistance welding. Adv Manuf Polym Compos Sci. 2017;3(1):32–41.
  • Shi H, Villegas IF, Octeau M-A, et al. Continuous resistance welding of thermoplastic composites: modelling of heat generation and heat transfer. Compos Part A Appl Sci Manuf. 2015;70:16–26.
  • Heimerdinger MW. Repair technology for thermoplastic aircraft structures. 79th meeting of the AGARD structures and Materials Panel on "Composite Repair of Military Aircraft Structures". Seville, Spain: Northrop Grumman Corporation; 1994.
  • Villegas IF. Ultrasonic welding of thermoplastic composites. Front Mater. 2019;6:291.
  • Benatar A, Gutowski TG. Ultrasonic welding of PEEK graphite APC-2 composites. Polym Eng Sci. 1989;29(23):1705–1721.
  • Jongbloed B, Teuwen J, Benedictus R, et al. On differences and similarities between static and continuous ultrasonic welding of thermoplastic composites. Compos Part B. 2020;203:108466–108414.
  • Levy A, Corre ASL, Villegas IF. Modeling of the heating phenomena in ultrasonic welding of thermoplastic composites with flat energy directors. J Mater Process Technol. 2014;214(7):1361–1371.
  • Tateishi N, North TH, Woodhams RT. Ultrasonic welding using tie-layer materials. Part I: analysis of process operation. Polym Eng Sci. 1992;32(9):600–611.
  • Ramarathnam G, North TH, Woodhams RT. Ultrasonic welding using tie-layer materials. Part II: factors affecting the lap-shear strength of ultrasonic welds. Polym Eng Sci. 1992;32(9):612–619.
  • Fernandez Villegas I, Valle Grande B, Bersee HEN, et al. A comparative evaluation between flat and traditional energy directors for ultrasonic welding of CF/PPS thermoplastic composites. Compos Interfaces. 2015;22(8):717–729.
  • Hornstein J. Ultrasonic assembly of plastic parts. Proceedings of the Regional Technical Conference on Decorating; 1996.
  • Benatar A, Eswaran RV, Nayar SK. Ultrasonic welding of thermoplastics in the near-field. Polym Eng Sci. 1989;29(23):1689–1698.
  • Benatar A, Cheng Z. Ultrasonic welding of thermoplastics in the far-field. Polym Eng Sci. 1989;29(23):1699–1704.
  • Li Y, Arinez J, Liu Z, et al. Ultrasonic welding of carbon fiber reinforced composite with variable blank holding force. J Manuf Sci Eng. 2018;140(9):1–11.
  • Tutunjian S, Dannemann M, Fischer F, et al. A control method for the ultrasonic spot welding of fiber-reinforced thermoplastic laminates through the weld-power time derivative. J Manuf Mater Process. 2018;3(1):1–17.
  • Villegas IF. In situ monitoring of ultrasonic welding of thermoplastic composites through power and displacement data. J Thermoplast Compos Mater. 2015;28(1):66–85.
  • Villegas IF. Strength development versus process data in ultrasonic welding of thermoplastic composites with flat energy directors and its application to the definition of optimum processing parameters. Compos Part A Appl Sci Manuf. 2014;65:27–37.
  • Bhudolia SK, Gohel G, Leong KF, et al. Advances in ultrasonic welding of thermoplastic composites: a review. MDPI Mater. 2020;13(6):1284–1226. (
  • Suresh KS, Rani MR, Prakasan K, et al. Modeling of temperature distribution in ultrasonic welding of thermoplastics for various joint designs. J Mater Process Technol. 2007;186(1–3):138–146.
  • Palardy G, Shi H, Levy A, et al. A study on amplitude transmission in ultrasonic welding of thermoplastic composites. Compos Part A Appl Sci Manuf. 2018;113:339–349.
  • Jongbloed B, Teuwen J, Palardy G, et al. Continuous ultrasonic welding of thermoplastic composites: enhancing the weld uniformity by changing the energy director. J Compos Mater. 2020;54(15):2023–2035.
  • Frederick H, Li W, Palardy G. Disassembly study of ultrasonically welded thermoplastic composite joints via resistance heating. Materials. 2021;14(10):2521–2520.
  • Taylor NS, Jones SB, Weld M. The feasibility of welding thermoplastic composite materials. Constr Build Mater. 1989;3(4):213–219.
  • Don RC, et al. Application of thermoplastic resistance welding techniques to thermoset composites. Proceedings of the Society of Plastic Engineers. ANTEC 1994; 1994. p. 1295–1299.
  • Jacaruso GJ, Davis GC, McIntire AJ. Method of making thermoplastic adhesive strip for bonding thermoset composite structures. Hartford, CT: Google Patents; 1993.
  • McIntire AJ, Davis GC. Bonding of thermoset composite structures to metal structures. Hartford, CT: Google Patents; 1994.
  • Ageorges C, Ye L. Resistance welding of thermosetting composite/thermoplastic composite joints. Compos Part A Appl Sci Manuf. 2001;32(11):1603–1612.
  • Beehag A, Falzon P, Paton R. A mouldable thermoplastic interface for advanced composite components to reduce costs in aircraft assembly. Grapevine, TX: SAE International; 2005.
  • Paton R, et al. A breakthrough in the assembly of aircraft composite structures in 25th international congress of the aeronautical sciences. ICAS: Hamburg, Germany; 2006.
  • Schieler O, Beier U. Induction welding of hybrid thermoplastic-thermoset composite parts. Int J Appl Sci Technol. 2015;9:27–36.
  • Westerman EA, Roll PE. Apparatus to prepare composites for repair. 34th international SAMPE symposium and Exhibition - Tomorrow's materials: Today. SAMPE: Reno, Nevada; 1989.
  • Gorton BS. Interaction of nylon polymers with epoxy resins in adhesive blends. J Appl Polym Sci. 1964;8(3):1287–1295.
  • Wang Y-Y, Chen S-A. Polymer compatibility: Nylon-epoxy resin blends. Polym Eng Sci. 1980;20(12):823–829.
  • Wise RJ, Bates ADH. Ultrasonic welding of PES to aluminum alloy. 54th Annual Technical Conference, ANTEC 1996; 1996.
  • Jaquish J, et al. Graphite reinforced thermoplastic composites. Seattle, Washington: Boeing Aerospace Company; 1980.
  • Unger W, et al. Healing of fibre-reinforced thermoplastic structures. Can Aero Space J. 1988;34(4):233–238.
  • Davies P, Cantwell W, Kausch HH. Healing of cracks in carbon fibre-PEEK composites. J Mater Sci Lett. 1989;8(11):1247–1248.
  • Sivy GT. Rapid low-temperature cure patching system for field repair. 34th International SAMPE Symposium; 1989. p. 448–457.
  • Smiley AJ, Halbritter A, Cogswell FN, et al. Dual polymer bonding of thermoplastic composite structures. Polym Eng Sci. 1991;31(7):526–532.
  • Meakin PJ, Cogswell FN, Halbritter AJ, et al. Thermoplastic interlayer bonding of aromatic polymer composites—methods for using semi-crystallized polymers. Compos Manuf. 1991;2(2):86–91.
  • Niu MCY. Innovative design concepts for thermoplastic composite materials, in 35th International SAMPE Symposium. 1990.
  • Wilson TA, Graves MJ. Repair of graphite/PEEK APC-2 using thermoforming. SAMPE Q. 1991;23:51–57.
  • Almen GR, et al. 977 - a family of new toughened epoxy matrices. 34th International SAMPE Symposium. Reno, Nevada: SAMPE; 1989.
  • Lawrence J. A high power diode laser-based technique for the bonding of composite patches to aluminium alloys on various military aircraft. Laser Appl. 2006; 18(2) :151–155.
  • Kaden M, Keck R, Voggenreiter H. Developing a repair concept, using the advantages of carbon fibre reinforced thermoplastic. 16th International Conference on Composite Structures. 2011. Porto.
  • Kaden M, Keck R. Repair concept supported by laser removal and inductive heating. International congress of the aeronautical sciences. Brisbane, Australia: ICAS; 2012.
  • Sunar CK, Kaden M. Economical validation of a new repair concept for CF-Thermoplastics by its comparison with an ongoing repair process (e.g. CF-Thermosets). ECCM15 - 15th european conference on composite materials. Venice, Italy; 2012.
  • Nijhuis P. Repair of thin walled thermoplastic structures by melting, an experimental research. The Netherlands: National Aerospace Laboratory NLR; 2013.
  • Côté N, et al. Repair of thermoplastic composite structures using induction welding. CASI-ASTRO Conference. Québec, QC, Canada; 2018.
  • Miyake T, Takenaka K. Monitoring and repair technique for interfacial de-bonding in carbon fiber reinforced thermoplastics by means of induction heating. In: ICCM: 20th international conference on composite materials. Copenhagen: ICCM; 2015.
  • Toyoda H, Sato W, Takahashi J. Effect of thermal welding repair for damaged ultra-thin chopped carbon fiber tape reinforced thermoplastics. ECCM18 - 8th european conference on composite materials. Athens, Greece; 2018.
  • Schwanemann P, et al. Process development for generative manufacturing of fiber thermoplastic composites structures - Thermoplastic patch placement (TPP). ECCM7 - 17th European Conference on Composite Materials. Munich, Germany: ECCM; 2016. p. 1–4.
  • Gallo N, Pappadá S, Raganato U, et al. Development of the “high pressure repair dome” system for in-situ high performance repair of aeronautic structures. MATEC Web Conf. 2018;188:04004.
  • Ong CL, Sheu MF, Liou YY. The repair of thermoplastic composites after impact. 34th International SAMPE Symposium. Reno, Nevada; 1989. p. 458–463.
  • Justo J, et al. Experimental study of composite structures repair using additive manufacturing technologies. ECCM18 - 18th European conference on composite materials. Athens, Greece; 2018.
  • Hasan Z, Skaff B, Dequine D. Manufacturing and analysis considerations of ultem 9085 resin in aircraft structures. CAMX Virtual Conference Proceedings; 2020.
  • Waite S. FAA - EASA AM workshop. EASA - structures and materials safety. Virtual Meeting - European Union Aviation Safety Agency; 2020.