745
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanistic role of epigallocatechin-3-gallate in regulation of the antioxidant markers in ethanol induced liver damage in mice

, , , , , , , , , , & ORCID Icon show all
Pages 108-116 | Received 08 Mar 2022, Accepted 30 Sep 2022, Published online: 22 Oct 2022

References

  • Reyes-Gordillo K, Shah R, Muriel P. Oxidative stress and inflammation in hepatic diseases: current and future therapy. Oxid Med Cell Longev. 2017;(2017(2):2–4.
  • Dayem AA, Hossain MK, Bin LS, et al. The role of Reactive Oxygen Species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sc. 2017;18(1):1–21.
  • Zhao L, Zhang N, Yang D, et al. Protective effects of five structurally diverse flavonoid subgroups against chronic alcohol-induced hepatic damage in a mouse model. J Nutrients. 2018;10(1754):1–14.
  • Teschke R. Alcoholic liver disease: alcohol metabolism, cascade of molecular mechanisms, cellular targets, and clinical aspects. J Biomed. 2018;6(106):1–57.
  • Erdemli ME, Zayman E, Erdemli Z, et al. Protective effects of melatonin and vitamin E in acetamiprid-induced nephrotoxicity. Environ Sci Pollut Res. 2020;27(9):9202–9213.
  • Mao X, Gu C, Chen D, et al. Oxidative stress-induced diseases and tea polyphenols. Imparct J. 2017;8(46):81649–81661.
  • Zwolak I. Epigallocatechin Gallate Manage Heavy Metal-Induced Oxid Stress. Catalase is regulated by ubiquitination and proteosomal degradation. Role of the c-Abl and Arg tyrosine kinases. 2021;22(4027):2–24. https://doi.org/10.3390/ijms22084027
  • Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress. J Mol. 2018;23(965):1–11.
  • Ilyas MN, Adzim MKR SN, A. A. Sample size calculation for animal studies using degree of freedom (E); an easy and statistically defined approach for metabolomics and genetic research. Curr Trends Biomed Eng Biosci. 2017;10(2):1–2.
  • Szlęzak D, Bronowicka-Adamska P, Hutsch T, et al. Hypertension and aging affect liver sulfur metabolism in rats. Cells. 2021;10(5):5.
  • Prabhakar PV, Reddy UA, Singh SP, et al. Oxidative stress induced by aluminum oxide nanomaterials after acute oral treatment in Wistar rats. J Appl Toxicol. 2012;32(2012):436–445.
  • Levine BRL, Garland D, Oliver CN, et al. Determination Carbonyl content in Oxidat Ively Modified Proteins. Methods in Enzymology. 1990;186(187):464–478.
  • Fridovich MP, Hawa M. The role of superoxide anion in the autoxidation of Epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–3175.
  • Cohen G, Judith M, X- T. Measurement of catalase activity in tissue extracts. Anal Biochem. 1970;34(1):30–38. https://doi.org/10.1016/0003-2697(70)90083-7
  • Wilson DF, Matschinsky FM. Ethanol metabolism: the good, the bad, and the ugly. Med Hypotheses. 2020;140(1096):1–22.
  • Karimi-khouzani O, Heidarian E, Amini SA. oxidative stress and liver damage in rats. Pharmacol Rep. 2017;46(4):830–835.
  • Moya EA, Arias P, Iturriaga R. Nitration of MnSOD in the carotid body and adrenal gland induced by chronic intermittent hypoxia. J Histochem Cytochem. 2018;66(10):753–765.
  • Rosa AC, Corsi D, Cavi N, et al. Superoxide dismutaseg administration: a review of proposed human uses. Molecules. 2021;26(7):1–40.
  • Yu C, Xiao J. Review article the Keap1-Nrf2 system: a mediator between oxidative stress and aging. J Oxid Med Cell Longevity. 2021;(2021(6635460):1–16.
  • Lee D, Song M, Kim E. Role of oxidative stress and Nrf2/KEAP1 signaling in colorectal cancer: mechanisms and therapeutic perspectives with phytochemicals. J Antioxid. 2021;10(173):1–23.
  • Rhee SG, Yang KS, Kang SW, et al. Controlled elimination of intracellular H2O2: regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signaling. 2005;7(6):619–626.
  • Lismont C, Revenco I, Fransen M. Peroxisomal hydrogen peroxide metabolism and signaling in health and disease. Int J Mol Sci. 2019;20(15):15.
  • Tatalovi N, Uzelac TV, Orešˇ Z. Ibogaine-Mediated ROS/antioxidant elevation in Isolated Rat Uterus is β -Adrenergic receptors and K ATP channels mediated (Antioxidants (MDPI)). 2021. p. 1–16.