133
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of a rapid isothermal amplification method for clinical detection of Pseudomonas aeruginosa

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 108-112 | Received 09 Jan 2024, Accepted 09 Apr 2024, Published online: 17 Apr 2024

References

  • Badal D, Jayarani AV, Kollaran MA, et al. Foraging signals promote swarming in starving pseudomonas aeruginosa. MBio. 2021 Oct 26;12(5):e0203321. doi: 10.1128/mBio.02033-21
  • Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today. 2019;24(1):350–359. doi: 10.1016/j.drudis.2018.07.003
  • Li X, Zhou L, Lei T, et al. Genomic epidemiology and ceftazidime-avibactam high-level resistance mechanisms of Pseudomonas aeruginosa in China from 2010 to 2022. Emerg Microbes Infect. 2024;13(1):2324068. doi: 10.1080/22221751.2024.2324068
  • Deng Z-P, Ying Y, Xiao-Ling W, et al. Effect analysis of 80 cases of bronchiectasis with pyomonas aeruginosa infection. Clin Pulm. 2014;19(2):308–310.
  • Yan Z-L, Min-Jian G, Bin J, et al. A case report of pyomonas aeruginosa detected in vaginal fluid. Chin J Disinfec. 2008;1:84.
  • Zhai J-W. Clinical and drug susceptibility of elderly patients with lower respiratory tract infection of Pseudomonas aeruginosa in hospital. J Clinic Medicine (Electronic). 2014;1(9):1564–1569.
  • Horcajada JP, Montero M, Oliver A, et al. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant pseudomonas aeruginosa infections. Clin Microbiol Rev. 2019;32(4):e00031–19. doi: 10.1128/CMR.00031-19
  • Li Z, Hua L, Xie L, et al. Automated microfluidic nucleic acid detection platform-integrated RPA-T7-Cas13a for pathogen diagnosis. Anal Chem. 2023;95(17):6940–6947. doi: 10.1021/acs.analchem.3c00242
  • Tian J, Chen B, Zhang B, et al. A new auto-RPA-fluorescence detection platform for SARS-CoV-2. Lab Med. 2023;54(2):182–189. doi: 10.1093/labmed/lmac093
  • Tian T, Qiu Z, Jiang Y, et al. Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device. Biosens Bioelectron. 2022;196:113701. doi: 10.1016/j.bios.2021.113701
  • Meng Y-D, Shuang L, Jun-Ning Z, et al. Real-time fluorescent recombinant polymerase amplification for detection of Candida albicans. Chin J Burns. 2019;8:587–594.
  • Ge Z-Y, Zhou J-H, Shang Y-J, Li X-R, Liu Y-S, Zhao L. A side-flow test for Brucella infection with polymerase amplification (RPA) of FAM recombinant enzyme. Chin J Anim Infect Dis. 2019;35(10):905–908.
  • Pei M-J, Li S-L, Li M-L, et al. Establishment of amplified fluorescence detection method for yersinia pestis recombinant polymerase nucleic acid. Armed Police Med Sci. 2022;33(4):339–342.
  • Huang L, Zhao-Hui H, Yong-Fei Y, et al. Application of RPA technique in the diagnosis of mycobacterium tuberculosis. Med Animal Control. 2022;38(7):626–628.
  • Guo Qing-Xin CJ-C, Hong-Wei Z, Rong Z, et al. Whole genome sequencing analysis of a strain of Pseudomonas aeruginosa producing carbapenemase GES-1. Chin J Anal Lab. 2021;39(5):362–366.
  • Shi J, Zou MX, Wang HC, et al. Analysis of biofilms, quorum-sensing genes and drug resistance of Pseudomonas aeruginosa isolates. J Clinic Lab. 2017;35(4):254–257.
  • Wang Q, Jun L, Xiao-Chun W, et al. Multidrug resistance risk factors analysis of Pseudomonas aeruginosa. J. clin. lab. (electronic edition) 2018;7(3):437.
  • Jin XJ, Gong YL, Yang L, et al. Application of recombinase polymerase amplification in the detection of Pseudomonas aeruginosa. Chin J Burns. 2018;34(4):233–239. doi: 10.3760/cma.j.issn.1009-2587.2018.04.008
  • Tang YJ, Ali Z, Zou J, et al. Detection of Pseudomonas aeruginosa based on magnetic enrichment and nested PCR. J Nanosci Nanotechnol. 2014;14(7):4886–4890. doi: 10.1166/jnn.2014.8707