3,998
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Recent advancements in the analysis of bone microstructure: new dimensions in forensic anthropology

ORCID Icon, & ORCID Icon
Pages 294-309 | Received 01 Apr 2018, Accepted 30 May 2018, Published online: 03 Oct 2018

References

  • Kerley ER. The microscopic determination of age in human-bone. Am J Phys Anthropol. 1965;23:149–163.
  • Jowsey J. Studies of Haversian systems in man and some animals. J Anat. 1966;100:857–864.
  • Ahlqvist J, Damsten O. A modification of Kerley's method for the microscopic determination of age in human bone. J Forensic Sci. 1969;14:205–212.
  • Singh IJ, Gunberg DL. Estimation of age at death in human males from quantitative histology of bone fragments. Am J Phys Anthropol. 1970;33:373–381.
  • Frost H. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res. 1969;3:211–237.
  • Martin RB, Burr DB, Sharkey NA, et al. Skeletal tissue mechanics. 2nd ed. New York: Springer Press; 2015.
  • Burr DB. Targeted and nontargeted remodeling. Bone. 2002;30:2–4.
  • Martin RB. Is all cortical bone remodeling initiated by microdamage? Bone. 2002;30:8–13.
  • Amprino R. A contribution to the functional meaning of the substitution of primary by secondary bone tissue. Acta Anat (Basel). 1948;5:291–300.
  • Robling AG, Stout SD. Histomorphometry of human cortical bone: applications to age estimation. In: Katzenberg MA, Saunders SR, editors. Biological anthropology of the human skeleton. 2nd ed. New York: Wiley-Liss; 2008.
  • Thompson DD. The core technique in the determination of age at death of skeletons. J Forensic Sci. 1979;24:902–915.
  • Stout SD, Paine RR. Brief communication: histological age estimation using rib and clavicle. Am J Phys Anthropol. 1992;87:111–115.
  • Stout SD. The use of bone histomorphometry in skeletal identification: the case of Francisco Pizarro. J Forensic Sci. 1986;31:296–300.
  • Frost HM. Treatment of osteoporoses by manipulation of coherent bone cell-populations. Clin Orthop Relat R. 1979;143:227–244.
  • Frost HM. Metabolism of bone. N Engl J Med. 1973;289:864–865.
  • Frost HM. Cortical bone volume and mass. Calcif Tissue Res. 1972;10:252.
  • Frost HM. Osteon population density method of measuring Haversian bone formation rates. Am J Phys Anthropol. 1968;29:133.
  • Frost HM. Tetracycline bone labeling in anatomy. Am J Phys Anthropol. 1968;29:183.
  • Ericksen MF. Histologic estimation of age at death using the anterior cortex of the femur. Am J Phys Anthropol. 1991;84:171–179.
  • Pfeiffer S, Lazenby R, Chiang J. Brief communication: cortical remodeling data are affected by sampling location. Am J Phys Anthropol. 1995;96:89–92.
  • Bouvier M, Ubelaker DH. A comparison of two methods for the microscopic determination of age at death. Am J Phys Anthropol. 1977;46:391–394.
  • Stout SD, Gehlert SJ. Effects of field size when using Kerley's histological method for determination of age at death. Am J Phys Anthropol. 1982;58:123–125.
  • Crowder C. Evaluating the use of quantitative bone histology to estimate adult age at death. Toronto, Canada: University of Toronto; 2005.
  • Narasaki S, Laughlin SB. Intracortical bone remodeling rate differences in 3 mongoloid populations – dietary factors hypothesis. J Anthropol Soc Nip. 1990;98:178.
  • Pfeiffer S. Cortical bone age estimates from historically known adults. Z Morphol Anthropol. 1992;79:1–10.
  • Ott SM, Oleksik A, Lu YL, et al. Bone histomorphometric and biochemical marker results of a 2-year placebo-controlled trial of raloxifene in postmenopausal women. J Bone Miner Res. 2002;17:341–348.
  • Mulhern DM, Ubelaker DH. Differentiating human from nonhuman bone microstructure. In: Crowder C, Stout SD, editors. Bone histology: an anthropological perspective. Boca Raton (FL): CRC Press; 2012.
  • Burr DB, Martin RB. Errors in bone remodeling: toward a unified theory of metabolic bone disease. Am J Anat. 1989;186:186–216.
  • Currey JD. The many adaptations of bone. J Biomech. 2003;36:1487–1495.
  • Crowder C, Andronowski JM, Dominguez VD. Bone histology as an integrated tool in the process of human identification. In: Latham K, Bartelink E, Finnegan M, editors. New perspectives in forensic human skeletal identification. 1st ed. Cambridge (MA): Elsevier; 2017.
  • Burr DB, Allen MR. Bone morphology and organization. Basic and applied bone biology. London (UK): Elsevier; 2003.
  • Currey JD. The structure of bone tissue. Bones: structure and mechanics. Princeton (NJ): Princeton University Press; 2002.
  • Morris Z, Crowder C. Evaluation of Histomorphometrics: Osteon Population Density. Annual Meeting of the Southern Anthropological Society; 2005; Chattanooga, TN.
  • Cho H, Stout SD, Madsen RW, et al. Population-specific histological age-estimating method: a model for known African-American and European-American skeletal remains. J Forensic Sci. 2002;47:12–18.
  • Heinrich JT, Crowder C, Pinto DC. Proposal and validation of definitions for intact and fragmented osteons. Annual Meeting of the American Association of Physical Anthropologists; 2012; Portland, OR.
  • Cooper DML, Turinsky A, Sensen C, et al. Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcif Tissue Int. 2007;80:211–219.
  • Harrison KD, Cooper DM. Modalities for visualization of cortical bone remodeling: the past, present, and future. Front Endocrinol (Lausanne). 2015;6:122.
  • Leeuwenhoeck, A. Microscopical observations of the structure of teeth and other bones: made and communicated, in a letter by Mr. Anthony Leeuwenhoeck. Philos Trans R Soc Lond, B, Biol Sci. 1677–1678;12:1002–1003.
  • Schnapper A, Reumann K, Meyer W. The architecture of growing compact bone in the dog: visualization by 3D-reconstruction of histological sections. Ann Anat. 2002;184:229–233.
  • Hert J, Fiala P, Petrtyl M. Osteon orientation of the diaphysis of the long bones in man. Bone. 1994;15:269–277.
  • Petrtyl M, Hert J, Fiala P. Spatial organization of the Haversian bone in man. J Biomech. 1996;29:161–169.
  • Albu I, Georgia R, Urlea G, et al. Comparative data on the Haversian Canal System in the human and horse femur. Acta Anat. 1984;120:5.
  • Vasciaveo FBE. Vascular channels and resorption cavities in the long bone cortex the Bovine bone. Acta Anat. 1961;47:1–33.
  • Cohen J, Harris WH. The three-dimensional anatomy of Haversian systems. J Bone Joint Surg Am. 1958;40-A:419–434.
  • Sterio DC. The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc-Oxford. 1984;134:127–136.
  • Gunderson HJG. Steriology of arbitrary particles. J Microsc. 1986;143:3–45.
  • Tappen NC. Three-dimensional studies on resorption spaces and developing osteons. Am J Anat. 1977;149:301–332.
  • Stout SD, Brunsden BS, Hildebolt CF, et al. Computer-assisted 3D reconstruction of serial sections of cortical bone to determine the 3D structure of osteons. Calcif Tissue Int. 1999;65:280–284.
  • Boushey DR, Stultz WA. The preparation of human cross-sections. Anat Rec. 1983;207: 379–383.
  • Augat P, Reeb H, Claes LE. Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. J Bone Miner Res. 1996;11:1356–1363.
  • Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993;14: 595–608.
  • van der Meulen MC, Jepsen KJ, Mikic B. Understanding bone strength: size isn't everything. Bone. 2001;29:101–104.
  • Feldkamp LA, Goldstein SA, Parfitt AM, et al. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4:3–11.
  • Muller R, Ruegsegger P. 3-Dimensional finite-element modeling of noninvasively assessed trabecular bone structures. Med Eng Phys. 1995;17:126–133.
  • Borah B, Gross GJ, Dufresne TE, et al. Three-dimensional microimaging (MR mu I and mu CT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat Rec. 2001;265:101–110.
  • Fajardo RJ, Ryan TM, Kappelman J. Assessing the accuracy of high-resolution X-ray computed tomography of primate trabecular bone by comparisons with histological sections. Am J Phys Anthropol. 2002;118:1–10.
  • Ryan TM, Ketcham RA. Femoral head trabecular bone structure in two omomyid primates. J Hum Evol. 2002;43:241–263.
  • Ryan TM, Ketcham RA. The three-dimensional structure of trabecular bone in the femoral head of strepsirrhine primates. J Hum Evol. 2002;43:1–26.
  • Kuhn G, Schultz M, Muller R, et al. Diagnostic value of micro-CT in comparison with histology in the qualitative assessment of historical human postcranial bone pathologies. Homo. 2007;58:97–115.
  • Cooper DML, Thomas CDL, Clement JG. Technological developments in the analysis of cortical bone histology: the third dimension and its potential in anthropology. In: Crowder C, Stout SD, editors. Bone histology: an anthropological perspective. Boca Ranton (FL): CRC Press; 2012.
  • Sacco SM, Saint C, LeBlanc PJ, et al. Maternal consumption of hesperidin and Naringin flavanones exerts transient effects to Tibia bone structure in female CD-1 offspring. Nutrients. 2017;9:E250.
  • Basillais A, Bensamoun S, Chappard C, et al. Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements. J Orthop Sci. 2007;12:141–148.
  • Rohrbach D, Lakshmanan S, Peyrin F, et al. Spatial distribution of tissue level properties in a human femoral cortical bone. J Biomech. 2012;45:2264–2270.
  • Grimal Q, Raum K, Gerisch A, et al. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol. 2011;10:925–937.
  • Yeni YN, Brown CU, Wang Z, et al. The influence of bone morphology on fracture toughness of the human femur and tibia. Bone. 1997;21:453–459.
  • Lerebours C, Thomas CD, Clement JG, et al. The relationship between porosity and specific surface in human cortical bone is subject specific. Bone. 2015;72:109–117.
  • Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469:2128–2138.
  • Sacco SM, Saint C, LeBlanc PJ, et al. Nutritional programming of bone structure in male offspring by maternal consumption of citrus flavanones. Calcif Tissue Int. 2017;18:671–682.
  • Sacco SM, Saint C, Longo AB, et al. Repeated irradiation from micro-computed tomography scanning at 2, 4 and 6 months of age does not induce damage to tibial bone microstructure in male and female CD-1 mice. Bonekey Rep. 2017;6:855.
  • Carter Y, Thomas CD, Clement JG, et al. Variation in osteocyte lacunar morphology and density in the human femur – a synchrotron radiation micro-CT study. Bone. 2013;52:126–132.
  • Carter Y, Thomas CDL, Clement JG, et al. Femoral osteocyte lacunar density, volume and morphology in women across the lifespan. J Struct Biol. 2013;183:519–526.
  • Andronowski JM, Mundorff AZ, Pratt IV, et al. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: a synchrotron radiation micro-CT approach. Forensic Sci Int Genet. 2017;28: 211–218.
  • Andronowski JM, Pratt IV, Cooper DML. Occurrence of osteon banding in adult human cortical bone. Am J Phys Anthropol. 2017;164:635–642.
  • Carter Y, Suchorab JL, Thomas CD, et al. Normal variation in cortical osteocyte lacunar parameters in healthy young males. J Anat. 2014;225:328–336.
  • Qiu S, Rao DS, Palnitkar S, et al. Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res. 2003;18:1657–1663.
  • Qiu S, Rao DS, Palnitkar S, et al. Relationships between osteocyte density and bone formation rate in human cancellous bone. Bone. 2002;31:709–711.
  • Vashishth D, Gibson GJ, Fyhrie DP. Sexual dimorphism and age dependence of osteocyte lacunar density for human vertebral cancellous bone. Anat Rec A Discov Mol Cell Evol Biol. 2005;282:157–162.
  • Mullender MG, Huiskes R, Versleyen H, et al. Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species. J Orthop Res. 1996;14:972–979.
  • Qiu S, Fyhrie DP, Palnitkar S, et al. Histomorphometric assessment of Haversian canal and osteocyte lacunae in different-sized osteons in human rib. Anat Rec A Discov Mol Cell Evol Biol. 2003;272:520–525.
  • Mulhern DM, Ubelaker DH. Differences in osteon banding between human and nonhuman bone. J Forensic Sci. 2001;46:220–222.
  • Boutroy S, Bouxsein ML, Munoz F, et al. Non invasive measurement of trabecular architecture by 3D-pQCT discriminates osteopenic women with and without fractures. J Bone Min Res. 2005;20:S91.
  • Burghardt AJ, Issever AS, Schwartz AV, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:5045–5055.
  • Macdonald HM, Nishiyama KK, Hanley DA, et al. Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int. 2011;22:357–362.
  • Waarsing JH, Day JS, van der Linden JC, et al. Detecting and tracking local changes in the tibiae of individual rats: a novel method to analyse longitudinal in vivo micro-CT data. Bone. 2004;34:163–169.
  • Klinck RJ, Campbell GM, Boyd SK. Radiation effects on bone architecture in mice and rats resulting from in vivo micro-computed tomography scanning. Med Eng Phys. 2008;30:888–895.
  • Bouxsein ML. Bone quality: where do we go from here? Osteoporos Int. 2003;14:S118–S127.
  • Gordon CL, Lang TF, Augat P, et al. Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int. 1998;8:317–325.
  • Gourion-Arsiquaud S, Lukashova L, et al. Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Min Res. 2013;28:150–161.
  • Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther. 2005;27:1–11.
  • Reilly DT, Burstein AH. The elastic and ultimate properties of compact bone tissue. J Biomech. 1975;8:393–405.
  • Binkovitz LA, Sparke P, Henwood MJ. Pediatric DXA: clinical applications. Pediatr Radiol. 2007;37:625–635.
  • Bazin D, Chappard C, Combes C, et al. Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporos Int. 2009;20:1065–1075.
  • Morris MD, Mandair GS. Raman assessment of bone quality. Clin Orthop Relat Res. 2011;469:2160–2169.
  • Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34:443–453.
  • Gadeleta SJ, Boskey AL, Paschalis E, et al. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone. 2000;27:541–550.
  • Paschalis EP, Shane E, Lyritis G, et al. Bone fragility and collagen cross-links. J Bone Miner Res. 2004;19:2000–2004.
  • Koo WWK, Bajaj M, Mosely M, et al. Quantitative bone US measurements in neonates and their mothers. Pediatr Radiol. 2008;38: 1323–1329.
  • Rubinacci A, Moro GE, Boehm G, et al. Quantitative ultrasound for the assessment of osteopenia in preterm infants. Eur J Endocrinol. 2003;149:307–315.
  • Pereda L, Ashmeade T, Zaritt J, et al. The use of quantitative ultrasound in assessing bone status in newborn preterm infants. J Perinatol. 2003;23:655–659.
  • McDevitt H, Tomlinson C, White MP, et al. Quantitative ultrasound assessment of bone in preterm and term neonates. Arch Dis Child Fetal Neonatal Ed. 2005;90:F341–F342.
  • Ritschl E, Wehmeijer K, De Terlizzi F, et al. Assessment of skeletal development in preterm and term infants by quantitative ultrasound. Pediatr Res. 2005;58:341–346.
  • Ahmad I, Nemet D, Eliakim A, et al. Body composition and its components in preterm and term newborns: a cross-sectional, multimodal investigation. Am J Hum Biol. 2010;22:69–75.
  • Chen HL, Tseng HI, Yang SN, et al. Bone status and associated factors measured by quantitative ultrasound in preterm and full-term newborn infants. Early Hum Dev. 2012;88:617–622.
  • Rack B, Lochmuller EM, Janni W, et al. Ultrasound for the assessment of bone quality in preterm and term infants. J Perinatol. 2012;32:218–226.
  • Littner Y, Mandel D, Mimouni FB, et al. Bone ultrasound velocity of infants born small for gestational age. J Pediatr Endocrinol Metab. 2005;18:793–797.
  • Tomlinson C, McDevitt H, Ahmed SF, et al. Longitudinal changes in bone health as assessed by the speed of sound in very low birth weight preterm infants. J Pediatr. 2006;148:450–455.
  • Nemet D, Dolfin T, Wolach B, et al. Quantitative ultrasound measurements of bone speed of sound in premature infants. Eur J Pediatr. 2001;160:736–740.
  • Gonnelli S, Montagnani A, Gennari L, et al. Feasibility of quantitative ultrasound measurements on the humerus of newborn infants for the assessment of the skeletal status. Osteoporos Int. 2004;15:541–546.
  • Litmanovitz I, Dolfin T, Friedland O, et al. Early physical activity intervention prevents decrease of bone strength in very low birth weight infants. Pediatrics. 2003;112:15–19.
  • Specker BL, Schoenau E. Quantitative bone analysis in children: current methods and recommendations. J Pediatr. 2005;146:726–731.
  • Greenfield MA, Craven JD, Huddleston A, et al. Measurement of the velocity of ultrasound in human cortical bone in vivo – estimation of its potential value in the diagnosis of osteoporosis and metabolic bone-disease. Radiology. 1981;138:701–710.
  • Lee SC, Coan BS, Bouxsein ML. Tibial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone. Bone. 1997;21:119–125.
  • Guglielmi G, Adams J, Link TM. Quantitative ultrasound in the assessment of skeletal status. Eur Radiol. 2009;19:1837–1848.
  • Foldes AJ, Rimon A, Keinan DD, et al. Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone. 1995;17:363–367.
  • Prevrhal S, Fuerst T, Fan B, et al. Quantitative ultrasound of the tibia depends on both cortical density and thickness. Osteoporos Int. 2001;12:28–34.
  • Kaufman JJ, Einhorn TA. Perspectives – ultrasound assessment of bone. J Bone Miner Res. 1993;8:517–525.
  • Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int. 1997;7:7–22.
  • Bouxsein ML, Boardman KC, Pinilla TP, et al. Ability of bone properties at the femur, forearm, and calcaneus to predict the structural capacity of the proximal femur during a sideways fall. J Bone Min Res. 1995;10:S178.
  • Nicholson PHF, Lowet G, Cheng XG, et al. Assessment of the strength of the proximal femur in vitro: relationship with ultrasonic measurements of the calcaneus. Bone. 1997;20:219–224.
  • Njeh CF, Saeed I, Grigorian M, et al. Assessment of bone status using speed of sound at multiple anatomical sites. Ultrasound Med Biol. 2001;27:1337–1345.
  • Bouxsein ML, Coan BS, Lee SC. Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone. 1999;25:49–54.
  • Bauer DC, Gluer CC, Cauley JA, et al. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med. 1997;157:629–634.
  • Hans D, Dargent-Molina P, Schott AM, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet. 1996;348:511–514.
  • Huang C, Ross PD, Yates AJ, et al. Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int. 1998;63:380–384.
  • Ross P, Huang C, Davis J, et al. Predicting vertebral deformity using bone densitometry at various skeletal sites and calcaneus ultrasound. Bone. 1995;16:325–332.
  • Thompson PW, Taylor J, Oliver R, et al. Quantitative ultrasound (QUS) of the heel predicts wrist and osteoporosis-related fractures in women age 45–75 years. J Clin Densitom. 1998;1:219–225.
  • Hans D, Srivastav S, Singal C, et al. Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? J Bone Min Res. 1999;14:644–651.
  • Barkmann R, Kantorovich E, Singal C, et al. A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination. J Clin Densitom. 2000;3:1–7.
  • Talmant M, Kolta S, Roux C, et al. In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment. J Ultrasound Med. 2009;35:912–919.
  • Weiss M, Ben-Shlomo A, Hagag P, et al. Discrimination of proximal hip fracture by quantitative ultrasound measurement at the radius. Osteoporos Int. 2000;11:411–416.
  • Hans D, Fuerst T, Duboeuf F. Quantitative ultrasound bone measurement. Eur Radiol. 1997;7:S43.
  • Fielding KT, Nix DA, Bachrach LK. Comparison of calcaneus ultrasound and dual X-ray absorptiometry in children at risk of osteopenia. J Clin Densitom. 2003;6:7–15.
  • Wright LL, Glade MJ, Gopal J. The use of transmission ultrasonics to assess bone status in the human newborn. Pediatr Res. 1987;22:541–544.
  • Altuncu E, Akman I, Yurdakul Z, et al. Quantitative ultrasound and biochemical parameters for the assessment of osteopenia in preterm infants. J Matern Fetal Neonatal Med. 2007;20:401–405.
  • Littner Y, Mandel D, Cohen S, et al. Bone ultrasound velocity of appropriately grown for gestational age concordant twins. Am J Perinatol. 2004;21:269–273.
  • Yiallourides M, Savoia M, May J, et al. Tibial speed of sound in term and preterm infants. Biol Neonate. 2004;85:225–228.
  • Littner Y, Mandel D, Mimouni FB, et al. Bone ultrasound velocity curves of newly born term and preterm infants. J Pediatr Endocrinol Metab. 2003;16:43–47.
  • Rigo J, De Curtis M. Disorders of calcium, phosphorus and magnesium metabolism. Neonat Perinat Med. 2006;8:1492–1523.
  • Gursoy T, Yurdakok M, Hayran M, et al. Bone speed of sound curves of twin and singleton neonates. J Pediatr Endocrinol Metab. 2008;21:1065–1072.
  • Litmanovitz I, Dolfin T, Regev R, et al. Bone turnover markers and bone strength during the first weeks of life in very low birth weight premature infants. J Perinat Med. 2004;32:58–61.
  • McDevitt H, Tomlinson C, White MP, et al. Changes in quantitative ultrasound in infants born at less than 32 weeks' gestation over the first 2 years of life: influence of clinical and biochemical changes. Calcif Tissue Int. 2007;81:263–269.
  • Mercy J, Dillon B, Morris J, et al. Relationship of tibial speed of sound and lower limb length to nutrient intake in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2007;92:381–385.
  • Tansug N, Yildirim SA, Canda E, et al. Changes in quantitative ultrasound in preterm and term infants during the first year of life. Eur J Radiol. 2011;79:428–431.
  • Zadik Z, Price D, Diamond G. Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos Int. 2003;14:857–862.
  • Love JC, Soto-Martinez ME. Development of a method to evaluate bone health of infants and young children in the medical examiner setting and emergency department. Harris County Institute of Forensic Sciences: Texas Center for the Judiciary-Children's Justice Act; 2015.