4,759
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Allometric equations for aboveground biomass estimation of Diospyros abyssinica (Hiern) F. White tree species

& ORCID Icon
Pages 86-97 | Received 19 Oct 2018, Accepted 28 Feb 2019, Published online: 25 Mar 2019

References

  • Aboal, J. R., J. R. Are´Valo, and A. Ferna´Ndez. 2005. “Allometric Relationships of Different Tree Species and Stand above Ground Biomass in the Gomera Laurel Forest (Canary Islands).” Flora 200(3): 264–274. doi:10.1016/j.flora.2004.11.001.
  • Alvarez, E., A. Duque, J. Saldarriaga, K. Cabrera, G. de Las Salas, I. Del Valle, A. Lema, F. Moreno, S. Orrego, and L. Rodríguez. 2012. “Tree Above-Ground Biomass Allometries for Carbon Stocks Estimation in the Natural Forests of Colombia.” Forest Ecology and Management 267: 297–308. doi:10.1016/j.foreco.2011.12.013.
  • Alves, L. F., S. A. Vieira, M. A. Scaranello, P. B. Camargo, F. A. M. Santos, C. A. Joly, and L. A. Martinelli. 2010. “Forest Structure and Live Aboveground Biomass Variation along an Elevational Gradient of Tropical Atlantic Moist Forest (Brazil).” Forest Ecology and Management 260 (5): 679–691. doi:10.1016/j.foreco.2010.05.023.
  • Aryal, D. R., B. H. J. De Jong, S. Ochoa-Gaona, L. Esparza-Olguin, and J. Mendoza-Vega. 2014. “Carbon Stocks and Changes in Tropical Secondary Forests of Southern Mexico.” Agriculture, Ecosystems & Environment 195: 220–230. doi:10.1016/j.agee.2014.06.005.
  • Asres, T. 1996. “Agroecological Zones of Southwest Ethiopia.” Matreialien Zur Ostafrica-Forschung 13: 1–241.
  • Baraloto, C., S. Rabaud, Q. Molto, L. Blanc, C. Fortunel, B. Hérault, N. Dávila, et al. 2011. “Disentangling Stand and Environmental Correlates of Aboveground Biomass in Amazonian Forests.” Global Change Biology 17 (8): 2677–2688. doi:10.1111/j.1365-2486.2011.02432.x.
  • Basuki, T. M., P. E. van Laake, A. K. Skidmore, and Y. A. Hussin. 2009. “Allometric Equations for Estimating the Above-Ground Biomass in Tropical Lowland Dipterocarp Forests.” Forest Ecology and Management 257 (8): 1684–1694. doi:10.1016/j.foreco.2009.01.027.
  • Bekele-Tesemma, A. 2007. “Useful Trees of Ethiopia: Identification, Propagation and Management in 17 Agroecological Zones.” Technical Manual No 6. RELMA in ICRAF Project, 552. Nairobi, Kenya. doi:10.1094/PDIS-91-4-0467B
  • Brown, S. 1997. “Estimating Biomass and Biomass Change of Tropical Forests: A Primer.” FAO Forestry Paper 134. Rome.
  • Brown, S., A. J. R. Gillespie, and A. E. Lugo. 1989. “Biomass Estimation Method for Tropical Forests with Application of Forest Inventory Data.” Forest Science 35 (4): 881–902. doi:10.1093/forestscience/35.4.881.
  • Chave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, H. Fo¨Lster, et al. 2005. “Tree Allometry and Improved Estimation of Carbon Stocks and Balance in Tropical Forests.” Oecologia 145 :87–99. doi:10.1007/s00442-0050100-x.
  • Chave, J., M. Rejou-Mechain, A. Burquez, E. Chidumayo, M. S. Colgan, W. B. Delitti, A. Duque, et al. 2014. “Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees.” Global Change Biology 20 (10): 3177–3190. doi:10.1111/gcb.12629.
  • Chen, J., S. C. Saunders, T. R. Crow, R. J. Naiman, K. D. Brosofske, G. D. Mroz, B. L. Brookshire, and J. F. Franklin. 1999. “Microclimate in Forest Ecosystem and Landscape Ecology.” BioScience 49 (4): 288–297. doi:10.2307/1313612.
  • Conti, G., and S. Díaz. 2013. “Plant Functional Diversity and Carbon Storage - an Empirical Test in Semi-Arid Forest Ecosystems.” Journal of Ecology 101 (1): 18–28. doi:10.1111/1365-2745.12012.
  • Coomes, D. A., and R. B. Allen. 2007. “Effects of Size, Competition and Altitude on Tree Growth.” Journal of Ecology 95 (5): 1084–1097. doi:10.1111/j.1365-2745.2007.01280.x.
  • De-Miguel, S., T. Pukkala, N. Assaf, and Z. Shater. 2013. “Intra-Specific Differences in Allometric Equations for Aboveground Biomass of Eastern Mediterranean Pinus Brutia.” Annals of Forest Science 71 (1): 101–112. doi:10.1007/s13595-013-0334-4.
  • Denslow, J. S., and G. G. Sandra. 2000. “Variation in Stand Structure, Light and Seedling Abundance across a Tropical Moist Forest Chronosequence, Panama.” Journal of Vegetation Science 11: 201–212. doi:10.2307/3236800.
  • Djomo, A. N., and C. D. Chimi. 2017. “Tree Allometric Equations for Estimation of Above, below and Total Biomass in a Tropical Moist Forest: Case Study with Application to Remote Sensing.” Forest Ecology and Management 391: 184–193. doi:10.1016/j.foreco.2017.02.022.
  • Djomo, A. N., A. Ibrahima, J. Saborowski, and G. Gravenhorst. 2010. “Allometric Equations for Biomass Estimations in Cameroon and Pan Moist Tropical Equations Including Biomass Data from Africa.” Forest Ecology and Management 260 (10): 1873–1885. doi:10.1016/j.foreco.2010.08.034.
  • Eilu, G., D. L. N. Hafashimana, and J. M. Kasenene. 2004. “Tree Species Distribution in Forests of the Albertine Rift, Western Uganda.” African Journal of Ecology 42: 100–110. doi:10.1111/j.1365-2028.2004.00504.x.
  • Fayolle, A., J.-L. Doucet, J.-F. Gillet, N. Bourland, and P. Lejeune. 2013. “Tree Allometry in Central Africa: Testing the Validity of Pantropical Multi-Species Allometric Equations for Estimating Biomass and Carbon Stocks.” Forest Ecology and Management 305: 29–37. doi:10.1016/j.foreco.2013.05.036.
  • Friis, I. B. 1992. Forests and Forest Trees of Northeast Tropical Africa: Their Natural Habitats and Distribution Patterns in Ethiopia, Djibouti and Somalia, 396. London,UK: HMSO.
  • Gibbs, H. K., S. Brown, J. O. Niles, and J. A. Foley. 2007. “Monitoring and Estimating Tropical Forest Carbon Stocks: Making REDD a Reality.” Environmental Research Letters 2 (4): 13. doi:10.1088/1748-9326/2/4/045023.
  • Henry, M., A. Besnard, W. A. Asante, J. Eshun, S. Adu-Bredu, R. Valentini, M. Bernoux, and L. Saint-André. 2010. “Wood Density, Phytomass Variations within and among Trees, and Allometric Equations in a Tropical Rainforest of Africa.” Forest Ecology and Management 260 (8): 1375–1388. doi:10.1016/j.foreco.2010.07.040.
  • Henry, M., A. Bombelli, C. Trotta, A. Alessandrini, L. Birigazzi, G. Sola, G. Vieilledent, et al. 2013. “GlobAllomeTree: International Platform for Tree Allometric Equations to Support Volume, Biomass and Carbon Assessment.” iForest - Biogeosciences and Forestry 6 (5): 326–330. doi:10.3832/ifor0901-006.
  • Henry, M., N. Picard, C. Trotta, R. J. Manlay, R. Valentini, M. Bernoux, and L. Saint-André. 2011. “Estimating Tree Biomass of Sub-Saharan African Forests: A Review of Available Allometric Equations.” Silva Fennica 45 (3B): 477–569. doi:10.14214/sf.38.
  • Jara, M. C., M. Henry, M. Réjou-Méchain, C. Wayson, M. Zapata-Cuartas, D. Piotto, F. A. Guier, et al. 2014. “Guidelines for Documenting and Reporting Tree Allometric Equations.” Annals of Forest Science 72 (6): 763–768. doi:10.1007/s13595-014-0415-z.
  • Ketterings, Q. M., R. Coe, M. van Noordwijk, Y. Ambagau, and C. A. Palm. 2001. “Reducing Uncertainty in the Use of Allometric Biomass Equations for Predicting Above-Ground Tree Biomass in Mixed Secondary Forests.” Forest Ecology and Management 146: 199–209. doi:10.1016/S0378-1127(00)00460-6.
  • Kitayama, K., and S.-I. Aiba. 2002. “Ecosystem Structure and Productivity of Tropical Rain Forests along Altitudinal Gradients with Contrasting Soil Phosphorus Pools on Mount Kinabalu, Borneo.” Journal of Ecology 90: 37–51. doi:10.1046/j.0022-0477.2001.00634.x.
  • Kohyama, T., E. Suzuki, T. Partomihardjo, T. Yamada, and T. Kubo. 2003. “Tree Species Differentiation in Growth, Recruitment and Allometry in Relation to Maximum Height in a Bornean Mixed Dipterocarp Forest.” Journal of Ecology 91: 797–806. doi:10.1046/j.1365-2745.2003.00810.x.
  • Lin, L., E. Sills, and H. Cheshire. 2014. “Targeting Areas for Reducing Emissions from Deforestation and Forest Degradation (REDD+) Projects in Tanzania.” Global Environmental Change 24: 277–286. doi:10.1016/j.gloenvcha.2013.12.003.
  • Litton, C. M., and J. B. Kauffman. 2008. “Allometric Models for Predicting Aboveground Biomass in Two Widespread Woody Plants in Hawaii.” Biotropica 40 (3): 313–320. doi:10.1111/j.1744-7429.2007.00383.x.
  • Malhi, Y., D. Wood, T. R. Baker, J. Wright, O. L. Phillips, T. Cochrane, P. Meir, et al. 2006. “The Regional Variation of Aboveground Live Biomass in Old-Growth Amazonian Forests.” Global Change Biology 12 (7): 1107–1138. doi:10.1111/j.1365-2486.2006.01120.x.
  • Mittermeier, R. A., P. R. Gil, M. Hoffman, J. Pilgrim, T. Brooks, C. G. Mittermeier, J. Lamoreux, and G. A. B. Da Fonseca. 2004. Hotspots Revisited. Mexico City: CEMEX. Sierra.
  • Muller-Landau, H. C. 2004. “Interspecific and Inter-Site Variation in Wood Specific Gravity of Tropical Trees.” Biotropica 36 (1): 20–32. doi:10.1111/j.1744-7429.2004.tb00292.x.
  • Na´Var, J. 2009. “Allometric Equations for Tree Species and Carbon Stocks for Forests of Northwestern Mexico.” Forest Ecology and Management 257: 427–434. doi:10.1016/j.foreco.2008.09.028.
  • Ngo, K. M., B. L. Turner, H. C. Muller-Landau, S. J. Davies, M. Larjavaara, N. F. Bin Nik Hassan, and S. Lum. 2013. “Carbon Stocks in Primary and Secondary Tropical Forests in Singapore.” Forest Ecology and Management 296: 81–89. doi:10.1016/j.foreco.2013.02.004.
  • Ngomanda, A., N. L. Engone Obiang, J. Lebamba, Q. Moundounga Mavouroulou, H. Gomat, G. S. Mankou, D. Joël Loumeto, et al. 2014. “Site-Specific versus Pantropical Allometric Equations: Which Option to Estimate the Biomass of a Moist Central African Forest?” Forest Ecology and Management 312 :1–9. doi:10.1016/j.foreco.2013.10.029.
  • Patino, S., J. Lloyd, R. Paiva, T. R. Baker, C. A. Quesada, L. M. Mercado, J. Schmerler, et al. 2009. “Branch Xylem Density Variations across the Amazon Basin.” Biogeosciences 6 (4): 545–568. doi:10.5194/bg-6-545-2009.
  • Paul, K. I., S. H. Roxburgh, J. R. England, P. Ritson, T. Hobbs, K. Brooksbank, J. R. Raison, et al. 2013. “Development and Testing of Allometric Equations for Estimating Above-Ground Biomass of Mixed-Species Environmental Plantings.” Forest Ecology and Management 310 :483–494. doi:10.1016/j.foreco.2013.08.054.
  • Picard, N., L. Saint-André, and M. Henry. 2012. Manual for Building Tree Volume and Biomass Allometric Equations: FromField Measurements to Prediction, 213. Rome: Food and Agricultural Organization of the United Nations.
  • Ploton, P., N. Barbier, S. Takoudjou Momo, M. Réjou-Méchain, F. Boyemba Bosela, G. Chuyong, G. Dauby, et al. 2016. “Closing a Gap in Tropical Forest Biomass Estimation: Taking Crown Mass Variation into Account in Pantropical Allometries.” Biogeosciences 13 (5): 1571–1585. doi:10.5194/bg-13-1571-2016.
  • Romijn, E., J. H. Ainembabazi, A. Wijaya, M. Herold, A. Angelsen, L. Verchot, and D. Murdiyarso. 2013. “Exploring Different Forest Definitions and Their Impact on Developing REDD+ Reference Emission Levels: A Case Study for Indonesia.” Environmental Science & Policy 33: 246–259. doi:10.1016/j.envsci.2013.06.002.
  • Segura, M., and M. Kanninen. 2005. “Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica.” Biotropica 37 (1): 2–8. doi:10.1111/j.1744-7429.2005.02027.x.
  • Slik, J. W. F., S.-I. Aiba, F. Q. Brearley, C. H. Cannon, O. Forshed, K. Kitayama, H. Nagamasu, et al. 2010. “Environmental Correlates of Tree Biomass, Basal Area, Wood Specific Gravity and Stem Density Gradients in Borneo’s Tropical Forests.” Global Ecology and Biogeography 19 :50–60. doi:10.1111/j.1466-8238.2009.00489.x.
  • van Breugel, M., J. Ransijn, D. Craven, F. Bongers, and J. S. Hall. 2011. “Estimating Carbon Stock in Secondary Forests: Decisions and Uncertainties Associated with Allometric Biomass Models.” Forest Ecology and Management 262: 1648–1657. doi:10.1016/j.foreco.2011.07.018.
  • Vanderwel, M. C., H. Zeng, J. P. Caspersen, G. Kunstler, and J. W. Lichstein. 2016. “Demographic Controls of Aboveground Forest Biomass across North America.” Ecology Letters 19 (4): 414–423. doi:10.1111/ele.12574.
  • White, F. 1988. “The Taxonomy, Ecology and Chorology of African Ebenaceae II. The non-Guineo-Congolian Species of Diospyros (Excluding Sect. Royena).” Bulletin Du Jardin Botanique National De Belgique/Bulletin Van De Nationale Plantentuin Van Belgie 325–448. doi:10.2307/3668296.