6,118
Views
38
CrossRef citations to date
0
Altmetric
Review

Effects of water level alteration on carbon cycling in peatlands

, &
Article: 1806113 | Received 18 Jul 2019, Accepted 27 Jul 2020, Published online: 08 Sep 2020

References

  • Abdalla, M., A. Hastings, J. Truu, M. Espenberg, Ü. Mander, and P. Smith. 2016. “Emissions of Methane from Northern Peatlands: A Review of Management Impacts and Implications for Future Management Options.” Ecology and Evolution 6 (19): 7080–29. doi:10.1002/ece3.2469.
  • Adkinson, A. C., K. H. Syed, and L. B. Flanagan. 2011. “Contrasting Responses of Growing Season Ecosystem CO2 Exchange to Variation in Temperature and Water Table Depth in Two Peatlands in Northern Alberta, Canada.” Journal of Geophysical Research Biogeosciences 116: G01004.
  • Aerts, R., B. Wallén, N. Malmer, and H. De Caluwe. 2001. “Nutritional Constraints on Sphagnum-growth and Potential Decay in Northern Peatlands.” Journal of Ecology 89 (2): 292–299. doi:10.1046/j.1365-2745.2001.00539.x.
  • Aerts, R., and F. Ludwig. 1997. “Water-table Changes and Nutritional Status Affect Trace Gas Emissions from Laboratory Columns of Peatland Soils.” Soil Biology & Biochemistry 29 (11–12): 1691–1698. doi:10.1016/S0038-0717(97)00074-6.
  • Allison, S. D., and K. K. Treseder. 2008. “Warming and Drying Suppress Microbial Activity and Carbon Cycling in Boreal Forest Soils.” Global Change Biology 14 (12): 2898–2909. doi:10.1111/j.1365-2486.2008.01716.x.
  • Alm, J., L. Schulman, J. Walden, H. Nykanen, P. J. Martikainen, and J. Silvola. 1999. “Carbon Balance of a Boreal Bog during a Year with an Exceptionally Dry Summer.” Ecology 80 (1): 161–174. doi:10.1890/0012-9658(1999)080[0161:CBOABB]2.0.CO;2.
  • Anderson, J. A. R. 1983. “The Tropical Peat Swamps of Western Malesia.” In Mires Swamp, Bog, Fen and Moor Regional Studies. Ecosystems of the World, edited by A. J. P. Gore, vol. 4b, 181–199. Amsterdam: Elsevier.
  • Andrus, R. E., D. J. Wagner, and J. E. Titus. 1983. “Vertical Zonation of Sphagnum Mosses along Hummock-hollow Gradients.” Canadian Journal of Botany-Revue Canadienne De Botanique 61: 3128–3139.
  • Arft, A. M., M. D. Walker, J. Gurevitch, J. M. Alatalo, M. S. Bret-Harte, M. Dale, M. Diemer, et al. 1999. “Responses of Tundra Plants to Experimental Warming Meta-Analysis of the International Tundra Experiment.” Ecological Monographs 69: 491–511.
  • Armstrong, A., J. Holden, K. Luxton, and J. N. Quinton. 2012. “Multi-scale Relationship between Peatland Vegetation Type and Dissolved Organic Carbon Concentration.” Ecological Engineering 47: 182–188. doi:10.1016/j.ecoleng.2012.06.027.
  • Armstrong, A., J. Holden, P. Kay, B. Francis, M. Foulger, S. Gledhill, A. T. McDonald, and A. Walker. 2010. “The Impact of Peatland Drain-blocking on Dissolved Organic Carbon Loss and Discolouration of Water; Results from a National Survey.” Journal of Hydrology 381 (1–2): 112–120. doi:10.1016/j.jhydrol.2009.11.031.
  • Armstrong, A., S. Waldron, N. J. Ostle, H. Richardson, and J. Whitaker. 2015. “Biotic and Abiotic Factors Interact to Regulate Northern Peatland Carbon Cycling.” Ecosystems 18 (8): 1395–1409. doi:10.1007/s10021-015-9907-4.
  • Artigas, F., J. Y. Shin, C. Hobble, A. Marti-Donati, K. V. R. Schafer, and I. Pechmann. 2015. “Long Term Carbon Storage Potential and CO2 Sink Strength of a Restored Salt Marsh in New Jersey.” Agricultural and Forest Meteorology 200: 313–321. doi:10.1016/j.agrformet.2014.09.012.
  • Arzhanov, M. M., A. V. Eliseev, and I. I. Mokhov. 2012. “A Global Climate Model Based, Bayesian Climate Projection for Northern Extra-tropical Land Areas.” Global and Planetary Change 86-87: 57–65. doi:10.1016/j.gloplacha.2012.02.001.
  • Asemaninejad, A., R. G. Thorn, and Z. Lindo. 2017. “Experimental Climate Change Modifies Degradative Succession in Boreal Peatland Fungal Communities.” Microbial Ecology 73 (3): 521–531. doi:10.1007/s00248-016-0875-9.
  • Atkin, O. K., and D. Macherel. 2009. “The Crucial Role of Plant Mitochondria in Orchestrating Drought Tolerance.” Annals of Botany 103 (4): 581–597. doi:10.1093/aob/mcn094.
  • Aurela, M., A. Lohila, J. Tuovinen, J. Hatakka, T. Riutta, and T. Laurila. 2009. “Carbon Dioxide Exchange on a Northern Boreal Fen.” Boreal Environment Research 14: 699–710.
  • Bakker, C., P. M. van Bodegom, H. J. M. Nelissen, R. Aerts, and W. H. O. Ernst. 2007. “Preference of Wet Dune Species for Waterlogged Conditions Can Be Explained by Adaptations and Specific Recruitment Requirements.” Aquatic Botany 86 (1): 37–45. doi:10.1016/j.aquabot.2006.08.005.
  • Ballantyne, D. M., J. A. Hribljan, T. G. Pypker, and R. A. Chimner. 2014. “Long-term Water Table Manipulations Alter Peatland Gaseous Carbon Fluxes in Northern Michigan.” Wetlands Ecology and Management 22 (1): 35–47. doi:10.1007/s11273-013-9320-8.
  • Bardgett, R. D., and D. A. Wardle. 2010. Aboveground-Belowground Linkages Biotic Interactions, Ecosystem Processes, and Global Change. Oxford and New York: Oxford University Press.
  • Barnard, R. L., C. A. Osborne, and M. K. Firestone. 2013. “Responses of Soil Bacterial and Fungal Communities to Extreme Desiccation and Rewetting.” The ISME Journal 7 (11): 2229–2241. doi:10.1038/ismej.2013.104.
  • Bellisario, L. M., J. L. Bubier, T. R. Moore, and J. P. Chanton. 1999. “Controls on CH4 Emissions from a Northern Peatland.” Global Biogeochemical Cycles 13 (1): 81–91. doi:10.1029/1998GB900021.
  • Berendse, F., N. Van Breemen, H. Rydin, A. Buttler, M. Heijmans, M. R. Hoosbeek, J. A. Lee, et al. 2001. “Raised Atmospheric CO2 Levels and Increased N Deposition Cause Shifts in Plant Species Composition and Production in Sphagnum Bogs.” Global Change Biology 7 (5): 591–598. doi:10.1046/j.1365-2486.2001.00433.x.
  • Berger, S., L. S. E. Praetzel, M. Goebel, C. Blodau, and K. H. Knorr. 2018. “Differential Response of Carbon Cycling to Long-term Nutrient Input and Altered Hydrological Conditions in a Continental Canadian Peatland.” Biogeosciences 15 (3): 885–903. doi:10.5194/bg-15-885-2018.
  • Bernard-Jannin, L., S. Binet, S. Gogo, F. Leroy, C. Defarge, N. Jozja, R. Zocatelli, L. Perdereau, and F. Laggoun-Defarge. 2018. “Hydrological Control of Dissolved Organic Carbon Dynamics in a Rehabilitated Sphagnum-dominated Peatland: A Water-table Based Modelling Approach.” Hydrology and Earth System Sciences 22 (9): 4907–4920. doi:10.5194/hess-22-4907-2018.
  • Beyer, C., and H. Höper. 2015. “Greenhouse Gas Exchange of Rewetted Bog Peat Extraction Sites and a Sphagnum Cultivation Site in Northwest Germany.” Biogeosciences 12 (7): 2101–2117. doi:10.5194/bg-12-2101-2015.
  • Biancalani, R., and A. Avagyan, Eds. 2014. Towards Climate-responsible Peatlands Management. Mitigation of Climate Change in Agriculture Series (MICCA) 9. Rome: Food and Agiculture Organization of the United Nations (FAO).
  • Billett, M. F., S. M. Palmer, D. Hope, C. Deacon, R. Storeton-West, K. J. Hargreaves, C. Flechard, and D. Fowler. 2004. “Linking Land-atmosphere-stream Carbon Fluxes in a Lowland Peatland System.” Global Biogeochemical Cycles 18 (1): 12. doi:10.1029/2003GB002058.
  • Blodau, C., and M. Siems. 2012. “Drainage-induced Forest Growth Alters Belowground Carbon Biogeochemistry in the Mer Bleue Bog, Canada.” Biogeochemistry 107 (1–3): 107–123. doi:10.1007/s10533-010-9535-1.
  • Blodau, C., N. Basiliko, and T. R. Moore. 2004. “Carbon Turnover in Peatland Mesocosms Exposed to Different Water Table Levels.” Biogeochemistry 67 (3): 331–351. doi:10.1023/B:BIOG.0000015788.30164.e2.
  • Boelman, N. T., M. Stieglitz, H. M. Rueth, M. Sommerkorn, K. L. Griffin, G. R. Shaver, and J. A. Gamon. 2003. “Response of NDVI, Biomass, and Ecosystem Gas Exchange to Long-term Warming and Fertilization in Wet Sedge Tundra.” Oecologia 135 (3): 414–421. doi:10.1007/s00442-003-1198-3.
  • Boelman, N. T., M. Stieglitz, K. L. Griffin, and G. R. Shaver. 2005. “Inter-annual Variability of NDVI in Response to Long-term Warming and Fertilization in Wet Sedge and Tussock Tundra.” Oecologia 143 (4): 588–597. doi:10.1007/s00442-005-0012-9.
  • Bourgault, M. A., M. Larocque, M. Garneau, and M. Roux. 2018. “Quantifying Peat Hydrodynamic Properties and Their Influence on Water Table Depths in Peatlands of Southern Quebec (Canada).” Ecohydrology 11 (7): 12. doi:10.1002/eco.1976.
  • Bragazza, L. 2006. “A Decade of Plant Species Changes on A Mire in the Italian Alps: Vegetation-Controlled or Climate-Driven Mechanisms?” Climatic Change 77 (3–4): 415–429. doi:10.1007/s10584-005-9034-x.
  • Bragazza, L. 2008. “A Climatic Threshold Triggers the Die-off of Peat Mosses during an Extreme Heat Wave.” Global Change Biology 14: 2688–2695.
  • Bragazza, L., A. Buttler, B. J. M. Robroek, R. Albrecht, C. Zaccone, V. E. J. Jassey, and C. Signarbieux. 2016. “Persistent High Temperature and Low Precipitation Reduce Peat Carbon Accumulation.” Global Change Biology 22 (12): 4114–4123. doi:10.1111/gcb.13319.
  • Bragazza, L., and C. Freeman. 2007. “High Nitrogen Availability Reduces Polyphenol Content in Sphagnum Peat.” The Science of the Total Environment 377 (2–3): 439–443. doi:10.1016/j.scitotenv.2007.02.016.
  • Bragazza, L., J. Parisod, A. Buttler, and R. D. Bardgett. 2013. “Biogeochemical Plant–soil Microbe Feedback in Response to Climate Warming in Peatlands.” Nature Climate Change 3 (3): 273–277. doi:10.1038/nclimate1781.
  • Bragazza, L., R. D. Bardgett, E. A. D. Mitchell, and A. Buttler. 2015. “Linking Soil Microbial Communities to Vascular Plant Abundance along a Climate Gradient.” New Phytologist 205 (3): 1175–1182. doi:10.1111/nph.13116.
  • Breeuwer, A., B. J. M. Robroek, J. Limpens, M. Heijmans, M. G. C. Schouten, and F. Berendse. 2009. “Decreased Summer Water Table Depth Affects Peatland Vegetation.” Basic and Applied Ecology 10 (4): 330–339. doi:10.1016/j.baae.2008.05.005.
  • Bridgham, S. D., H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang. 2013. “Methane Emissions from Wetlands: Biogeochemical, Microbial, and Modeling Perspectives from Local to Global Scales.” Global Change Biology 19 (5): 1325–1346. doi:10.1111/gcb.12131.
  • Bridgham, S. D., J. Pastor, B. Dewey, J. F. Weltzin, and K. Updegraff. 2008. “Rapid Carbon Response of Peatlands to Climate Change.” Ecology 89 (11): 3041–3048. doi:10.1890/08-0279.1.
  • Bridgham, S. D., J. Pastor, J. A. Janssens, C. Chapin, and T. J. Malterer. 1996. “Multiple Limiting Gradients in Peatlands: A Call for A New Paradigm.” Wetlands 16 (1): 45–65. doi:10.1007/BF03160645.
  • Brix, H., B. K. Sorrell, and P. T. Orr. 1992. “Internal Pressurization and Convective Gas Flow in Some Emergent Freshwater Macrophytes.” Limnology and Oceanography 37 (7): 1420–1433. doi:10.4319/lo.1992.37.7.1420.
  • Bu, Z., J. Hans, H. Li, G. Zhao, X. Zheng, J. Ma, and J. Zeng. 2011. “The Response of Peatlands to Climate Warming: A Review.” Acta Ecologica Sinica 31 (3): 157–162. doi:10.1016/j.chnaes.2011.03.006.
  • Bubier, J. L. 1995. “The Relationship of Vegetation to Methane Emission and Hydrochemical Gradients in Northern Peatlands.” Journal of Ecology 83 (3): 403–420. doi:10.2307/2261594.
  • Bubier, J. L., G. Bhatia, T. R. Moore, N. T. Roulet, and P. M. Lafleur. 2003. “Spatial and Temporal Variability in Growing-season Net Ecosystem Carbon Dioxide Exchange at a Large Peatland in Ontario, Canada.” Ecosystems 6: 353–367.
  • Bubier, J. L., T. R. Moore, and G. Crosby. 2006. “Fine-scale Vegetation Distribution in a Cool Temperate Peatland.” Canadian Journal of Botany-Revue Canadienne De Botanique 84: 910–923.
  • Bubier, J. L., T. R. Moore, L. Bellisario, N. T. Comer, and P. M. Crill. 1995. “Ecological Controls on Methane Emissions from a Northern Peatland Complex in the Zone of Discontinuous Permafrost, Manitoba, Canada.” Global Biogeochemical Cycles 9 (4): 455–470. doi:10.1029/95GB02379.
  • Bunting, M. J., and B. G. Warner. 1998. “Hydroseral Development in Southern Ontario: Patterns and Controls.” Journal of Biogeography 25 (1): 3–18. doi:10.1046/j.1365-2699.1998.251195.x.
  • Buttler, A., B. J. M. Robroek, F. Laggoun-Défarge, V. E. J. Jassey, C. Pochelon, G. Bernard, F. Delarue, et al. 2015. “Experimental Warming Interacts with Soil Moisture to Discriminate Plant Responses in an Ombrotrophic Peatland.” Journal of Vegetation Science 26 (5): 964–974. doi:10.1111/jvs.12296.
  • Cai, T., L. B. Flanagan, and K. H. Syed. 2010. “Warmer and Drier Conditions Stimulate Respiration More than Photosynthesis in a Boreal Peatland Ecosystem: Analysis of Automatic Chambers and Eddy Covariance Measurements.” Plant, Cell & Environment 33 (3): 394–407. doi:10.1111/j.1365-3040.2009.02089.x.
  • Cao, R., X. Wei, Y. Yang, X. Xi, and X. Wu. 2017a. “The Effect of Water Table Decline on Plant Biomass and Species Composition in the Zoige Peatland A Four-year in Situ Field Experiment.” Agriculture, Ecosystems & Environment 247: 389–395. doi:10.1016/j.agee.2017.07.008.
  • Cao, R., X. Xi, Y. Yang, X. Wei, X. Wu, and S. Sun. 2017b. “The Effect of Water Table Decline on Soil CO2 Emission of Zoige Peatland on Eastern Tibetan Plateau A Four-year in Situ Experimental Drainage.” Applied Soil Ecology 120: 55–61. doi:10.1016/j.apsoil.2017.07.036.
  • Chanton, J. P., C. S. Martens, C. A. Kelley, P. M. Crill, and W. J. Showers. 1992. “Methane Transport Mechanisms and Isotopic Fractionation in Emergent Macrophytes of an Alaskan Tundra Lake.” Journal of Geophysical Research Atmospheres 97 (D15): 16681–16688. doi:10.1029/90JD01542.
  • Chanton, J. P., P. H. Glaser, L. S. Chasar, D. J. Burdige, M. E. Hines, D. I. Siegel, L. B. Tremblay, and W. T. Cooper. 2008. “Radiocarbon Evidence for the Importance of Surface Vegetation on Fermentation and Methanogenesis in Contrasting Types of Boreal Peatlands.” Global Biogeochemical Cycles 22 (4). doi:10.1029/2008GB003274.
  • Charman, D. 2002. Peatlands and Environmental Change, P 301. Chichester, UK: Wiley.
  • Chimner, R. A., and D. J. Cooper. 2003a. “Carbon Dynamics of Pristine and Hydrologically Modified Fens in the Southern Rocky Mountains.” Canadian Journal of Botany-Revue Canadienne De Botanique 81: 477–491.
  • Chimner, R. A., and D. J. Cooper. 2003b. “Influence of Water Table Levels on CO2 Emissions in a Colorado Subalpine Fen: An in Situ Microcosm Study.” Soil Biology & Biochemistry 35 (3): 345–351. doi:10.1016/S0038-0717(02)00284-5.
  • Chimner, R. A., D. J. Cooper, and W. J. Parton. 2002. “Modeling Carbon Accumulation in Rocky Mountain Fens.” Wetlands 22 (1): 100–110. doi:10.1672/0277-5212(2002)022[0100:MCAIRM]2.0.CO;2.
  • Chimner, R. A., and J. B. Hart. 1996. “Hydrology and Microtopography Effects Northern White-cedar Regeneration in Michigan’s Upper Peninsula.” Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 26 (3): 389–393. doi:10.1139/x26-043.
  • Chimner, R. A., T. G. Pypker, J. A. Hribljan, P. A. Moore, and J. M. Waddington. 2016. “Multi-decadal Changes in Water Table Levels Alter Peatland Carbon Cycling.” Ecosystems 20 (5): 1042–1057. doi:10.1007/s10021-016-0092-x.
  • Chivers, M. R., M. R. Turetsky, J. M. Waddington, J. W. Harden, and A. D. McGuire. 2009. “Effects of Experimental Water Table and Temperature Manipulations on Ecosystem CO2 Fluxes in an Alaskan Rich Fen.” Ecosystems 12 (8): 1329–1342. doi:10.1007/s10021-009-9292-y.
  • Chow, A. T., K. K. Tanji, S. Gao, and R. A. Dahlgren. 2006. “Temperature, Water Content and Wet–dry Cycle Effects on DOC Production and Carbon Mineralization in Agricultural Peat Soils.” Soil Biology and Biochemistry 38 (3): 477–488. doi:10.1016/j.soilbio.2005.06.005.
  • Churchill, A. C., M. R. Turetsky, A. D. McGuire, and T. N. Hollingsworth. 2015. “Response of Plant Community Structure and Primary Productivity to Experimental Drought and Flooding in an Alaskan Fen.” Canadian Journal of Forest Research 45 (2): 185–193. doi:10.1139/cjfr-2014-0100.
  • Clark, J. M., D. Ashley, M. Wagner, P. J. Chapman, S. N. Lane, C. D. Evans, and A. L. Heathwaite. 2009. “Increased Temperature Sensitivity of Net DOC Production from Ombrotrophic Peat Due to Water Table Draw-down.” Global Change Biology 15 (4): 794–807. doi:10.1111/j.1365-2486.2008.01683.x.
  • Clymo, R. S. 1984. “The Limits to Peat Bog Growth.” Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 303: 605–654.
  • Conrad, R. 2005. “Quantification of Methanogenic Pathways Using Stable Carbon Isotopic Signatures: A Review and a Proposal.” Organic Geochemistry 36 (5): 739–752. doi:10.1016/j.orggeochem.2004.09.006.
  • Cook, S., M. J. Whelan, C. D. Evans, V. Gauci, M. Peacock, M. H. Garnett, L. K. Kho, Y. A. Teh, and S. E. Page. 2018. “Fluvial Organic Carbon Fluxes from Oil Palm Plantations on Tropical Peatland.” Biogeosciences 15 (24): 7435–7450. doi:10.5194/bg-15-7435-2018.
  • Cooper, M. D. A., C. D. Evans, P. Zielinski, P. E. Levy, A. Gray, M. Peacock, D. Norris, N. Fenner, and C. Freeman. 2014. “Infilled Ditches are Hotspots of Landscape Methane Flux following Peatland Re-wetting.” Ecosystems 17 (7): 1227–1241. doi:10.1007/s10021-014-9791-3.
  • Couwenberg, J. 2009. Emission Factors for Managed Peat Soils (Organic Soils, Histosols) an Analysis of IPCC Default Values. Ede: Wetlands International.
  • Couwenberg, J., R. Dommain, and H. Joosten. 2010. “Greenhouse Gas Fluxes from Tropical Peatlands in South-east Asia.” Global Change Biology 16 (6): 1715–1732. doi:10.1111/j.1365-2486.2009.02016.x.
  • Crow, S. E., and R. K. Wieder. 2005. “Sources of CO2 Emission from a Northern Peatland: Root Respiration, Exudation, and Decomposition.” Ecology 86 (7): 1825–1834. doi:10.1890/04-1575.
  • Cui, L., X. Kang, W. Li, Y. Hao, Y. Zhang, J. Wang, L. Yan, et al. 2017. “Rewetting Decreases Carbon Emissions from the Zoige Alpine Peatland on the Tibetan Plateau.” Sustainability 9 (6): 948. doi:10.3390/su9060948.
  • D′Acunha, B., L. Morillas, T. A. Black, A. Christen, and M. S. Johnson. 2019. “Net Ecosystem Carbon Balance of a Peat Bog Undergoing Restoration: Integrating CO2 and CH4 Fluxes from Eddy Covariance and Aquatic Evasion with DOC Drainage Fluxes.” Journal of Geophysical Research Biogeosciences 124 (4): 884–901. doi:10.1029/2019JG005123.
  • Dai, A. 2013. “Increasing Drought under Global Warming in Observations and Models.” Nature Climate Change 3 (1): 52–58. doi:10.1038/nclimate1633
  • Davidson, E. A., and I. A. Janssens. 2006. “Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change.” Nature 440 (7081): 165–173. doi:10.1038/nature04514.
  • Davidson, S. J., M. Strack, R. A. Bourbonniere, and J. M. Waddington. 2019. “Controls on Soil Carbon Dioxide and Methane Fluxes from a Peat Swamp Vary by Hydrogeomorphic Setting.” Ecohydrology 12 (8): 8. doi:10.1002/eco.2162.
  • de Vries, F. T., M. E. Liiri, L. Bjørnlund, M. A. Bowker, S. Christensen, H. M. Setälä, and R. D. Bardgett. 2012. “Land Use Alters the Resistance and Resilience of Soil Food Webs to Drought.” Nature Climate Change 2 (4): 276–280. doi:10.1038/nclimate1368.
  • Del Giudice, R., and Z. Lindo. 2017. “Short-term Leaching Dynamics of Three Peatland Plant Species Reveals How Shifts in Plant Communities May Affect Decomposition Processes.” Geoderma 285: 110–116. doi:10.1016/j.geoderma.2016.09.028.
  • Dickopp, J., A. Lengerer, and M. Kazda. 2018. “Relationship between Groundwater Levels and Oxygen Availability in Fen Peat Soils.” Ecological Engineering 120: 85–93. doi:10.1016/j.ecoleng.2018.05.033.
  • Dieleman, C. M., B. A. Branfireun, J. W. McLaughlin, and Z. Lindo. 2015. “Climate Change Drives a Shift in Peatland Ecosystem Plant Community: Implications for Ecosystem Function and Stability.” Global Change Biology 21 (1): 388–395. doi:10.1111/gcb.12643.
  • Dieleman, C. M., B. A. Branfireun, J. W. McLaughlin, and Z. Lindo. 2016a. “Enhanced Carbon Release under Future Climate Conditions in a Peatland Mesocosm Experiment: The Role of Phenolic Compounds.” Plant and Soil 400 (1–2): 81–91. doi:10.1007/s11104-015-2713-0.
  • Dieleman, C. M., Z. Lindo, J. W. McLaughlin, A. E. Craig, and B. A. Branfireun. 2016b. “Climate Change Effects on Peatland Decomposition and Porewater Dissolved Organic Carbon Biogeochemistry.” Biogeochemistry 128 (3): 385–396. doi:10.1007/s10533-016-0214-8.
  • Dinsmore, K. J., M. F. Billett, U. M. Skiba, R. M. Rees, J. Drewer, and C. Helfter. 2010. “Role of the Aquatic Pathway in the Carbon and Greenhouse Gas Budgets of a Peatland Catchment.” Global Change Biology 16 (10): 2750–2762. doi:10.1111/j.1365-2486.2009.02119.x.
  • Dinsmore, K. J., U. M. Skiba, M. F. Billett, and R. M. Rees. 2009. “Effect of Water Table on Greenhouse Gas Emissions from Peatland Mesocosms.” Plant and Soil 318 (1–2): 229–242. doi:10.1007/s11104-008-9832-9.
  • Dise, N. B. 2009. “Peatland Response to Global Change.” Science 326 (5954): 810–811. doi:10.1126/science.1174268.
  • Dise, N. B., E. Gorham, and E. S. Verry. 1993. “Environmental-factors Controlling Methane Emissions from Peatlands in Northern Minnesota.” Journal of Geophysical Research-Atmospheres 98 (D6): 10583–10594. doi:10.1029/93JD00160.
  • Dixon, S. D., S. M. Qassim, J. G. Rowson, F. Worrall, M. G. Evans, I. M. Boothroyd, and A. Bonn. 2014. “Restoration Effects on Water Table Depths and CO2 Fluxes from Climatically Marginal Blanket Bog.” Biogeochemistry 118 (1–3): 159–176. doi:10.1007/s10533-013-9915-4.
  • Dommain, R., A. R. Cobb, H. Joosten, P. H. Glaser, A. F. L. Chua, L. Gandois, F.-M. Kai, et al. 2015. “Forest Dynamics and Tip-up Pools Drive Pulses of High Carbon Accumulation Rates in a Tropical Peat Dome in Borneo (Southeast Asia).” Journal of Geophysical Research Biogeosciences 120 (4): 617–640. doi:10.1002/2014JG002796.
  • Dommain, R., J. Couwenberg, and H. Joosten. 2011. “Development and Carbon Sequestration of Tropical Peat Domes in South-east Asia: Links to Post-glacial Sea-level Changes and Holocene Climate Variability.” Quaternary Science Reviews 30 (7–8): 999–1010. doi:10.1016/j.quascirev.2011.01.018.
  • Dorodnikov, M., K. H. Knorr, Y. Kuzyakov, and M. Wilmking. 2011. “Plant-mediated CH4 Transport and Contribution of Photosynthates to Methanogenesis at a Boreal Mire: A 14C Pulse-labeling Study.” Biogeosciences 8 (8): 2365–2375. doi:10.5194/bg-8-2365-2011.
  • Dorrepaal, E., S. Toet, R. S. P. van Logtestijn, E. Swart, M. J. van de Weg, T. V. Callaghan, and R. Aerts. 2009. “Carbon Respiration from Subsurface Peat Accelerated by Climate Warming in the Subarctic.” Nature 460 (7255): 616–619. doi:10.1038/nature08216.
  • Drollinger, S., K.-H. Knorr, W. Knierzinger, and S. Glatzel. 2020. “Peat Decomposition Proxies of Alpine Bogs along a Degradation Gradient.” Geoderma 369: 114331. doi:10.1016/j.geoderma.2020.114331.
  • Duval, T. P., and D. D. Radu. 2018. “Effect of Temperature and Soil Organic Matter Quality on Greenhouse-gas Production from Temperate Poor and Rich Fen Soils.” Ecological Engineering 114: 66–75. doi:10.1016/j.ecoleng.2017.05.011.
  • Edwards, K. R., E. Kaštovská, J. Borovec, H. Šantrůčková, and T. Picek. 2018. “Species Effects and Seasonal Trends on Plant Efflux Quantity and Quality in a Spruce Swamp Forest.” Plant and Soil 426 (1–2): 179–196. doi:10.1007/s11104-018-3610-0.
  • Elberling, B., L. Askaer, C. J. Jorgensen, H. P. Joensen, M. Kuhl, R. N. Glud, and F. R. Lauritsen. 2011. “Linking Soil O2, CO2, and CH4 Concentrations in a Wetland Soil: Implications for CO2 and CH4 Fluxes.” Environmental Science & Technology 45 (8): 3393–3399. doi:10.1021/es103540k.
  • Elmendorf, S. C., G. H. R. Henry, R. D. Hollister, R. G. Björk, A. D. Bjorkman, T. V. Callaghan, L. S. Collier, et al. 2012. “Global Assessment of Experimental Climate Warming on Tundra Vegetation Heterogeneity over Space and Time.” Ecology Letters 15 (2): 164–175. doi:10.1111/j.1461-0248.2011.01716.x.
  • Emsens, W.-J., R. van Diggelen, C. J. S. Aggenbach, T. Cajthaml, J. Frouz, A. Klimkowska, W. Kotowski, et al. 2020. Recovery of Fen Peatland Microbiomes and Predicted Functional Profiles after Rewetting. The ISME Journal 14(7): 1701–1712. doi:10.1038/s41396-020-0639-x.
  • Eriksson, T., M. G. Oquist, and M. B. Nilsson. 2010. “Production and Oxidation of Methane in a Boreal Mire after a Decade of Increased Temperature and Nitrogen and Sulfur Deposition.” Global Change Biology 16 (7): 2130–2144. doi:10.1111/j.1365-2486.2009.02097.x.
  • Eskelinen, A., and S. Harrison. 2014. “Exotic Plant Invasions under Enhanced Rainfall are Constrained by Soil Nutrients and Competition.” Ecology 95 (3): 682–692. doi:10.1890/13-0288.1.
  • Evans, C. D., F. Renou-Wilson, and M. Strack. 2016. “The Role of Waterborne Carbon in the Greenhouse Gas Balance of Drained and Re-wetted Peatlands.” Aquatic Sciences 78 (3): 573–590. doi:10.1007/s00027-015-0447-y.
  • Evans, C. D., M. Peacock, S. M. Green, J. Holden, P. J. Chapman, I. Lebron, N. Callaghan, R. Grayson, and A. J. Baird. 2018. “The Impact of Ditch Blocking on Fluvial Carbon Export from a UK Blanket Bog.” Hydrological Processes 32 (13): 2141–2154. doi:10.1002/hyp.13158.
  • Evans, C. D., S. E. Page, T. Jones, S. Moore, V. Gauci, R. Laiho, J. Hruška, et al. 2014. “Contrasting Vulnerability of Drained Tropical and High-latitude Peatlands to Fluvial Loss of Stored Carbon.” Global Biogeochemical Cycles 28 (11): 1215–1234. doi:10.1002/2013GB004782.
  • Farrick, K. K., and J. S. Price. 2009. “Ericaceous Shrubs on Abandoned Block-cut Peatlands: Implications for Soil Water Availability and Sphagnum Restoration.” Ecohydrology 2 (4): 530–540. doi:10.1002/eco.77.
  • Fenner, N., and C. Freeman. 2011. “Drought-induced Carbon Loss in Peatlands.” Nature Geoscience 4 (12): 895–900. doi:10.1038/ngeo1323.
  • Fenner, N., and C. Freeman. 2020. “Woody Litter Protects Peat Carbon Stocks during Drought.” Nature Climate Change 10 (4): 363–369. doi:10.1038/s41558-020-0727-y.
  • Fenner, N., C. Freeman, and B. Reynolds. 2005. “Hydrological Effects on the Diversity of Phenolic Degrading Bacteria in a Peatland: Implications for Carbon Cycling.” Soil Biology and Biochemistry 37 (7): 1277–1287. doi:10.1016/j.soilbio.2004.11.024.
  • Fenner, N., C. Freeman, M. A. Lock, H. Harmens, B. Reynolds, and T. Sparks. 2007a. “Interactions between Elevated CO2 and Warming Could Amplify DOC Exports from Peatland Catchments.” Environmental Science & Technology 41 (9): 3146–3152. doi:10.1021/es061765v.
  • Fenner, N., N. J. Ostle, N. McNamara, T. Sparks, H. Harmens, B. Reynolds, and C. Freeman. 2007b. “Elevated CO2 Effects on Peatland Plant Community Carbon Dynamics and DOC Production.” Ecosystems 10 (4): 635–647. doi:10.1007/s10021-007-9051-x.
  • Flanagan, N. E., H. Wang, S. Winton, and C. J. Richardson. 2020. “Low-severity Fire as a Mechanism of Organic Matter Protection in Global Peatlands: Thermal Alteration Slows Decomposition.” Global Change Biology 26 (7): 3930–3946. doi:10.1111/gcb.15102.
  • Flannigan, M., I. Campbell, M. Wotton, C. Carcaillet, P. Richard, and Y. Bergeron. 2001. “Future Fire in Canada’s Boreal Forest Paleoecology Results and General Circulation Model - Regional Climate Model Simulations.” Canadian Journal of Forest Research 31 (5): 854–864. doi:10.1139/x01-010.
  • Fleischer, E., I. Khashimov, N. Holzel, and O. Klemm. 2016. “Carbon Exchange Fluxes over Peatlands in Western Siberia Possible Feedback between Land-use Change and Climate Change.” Science of the Total Environment 545: 424–433. doi:10.1016/j.scitotenv.2015.12.073.
  • Frank, S., B. Tiemeyer, J. Gelbrecht, and A. Freibauer. 2014. “High Soil Solution Carbon and Nitrogen Concentrations in a Drained Atlantic Bog are Reduced To Natural Levels By 10 Years of Rewetting.” Biogeosciences 11(8): 2309–2324. doi:10.5194/bg-11-2309-2014.
  • Fraser, C. J. D., N. T. Roulet, and T. R. Moore. 2001. “Hydrology and Dissolved Organic Carbon Biogeochemistry in an Ombrotrophic Bog.” Hydrological Processes 15 (16): 3151–3166. doi:10.1002/hyp.322.
  • Freeman, C., N. Ostle, and H. Kang. 2001. “An Enzymic ‘Latch’ on a Global Carbon Store.” Nature 409 (6817): 149. doi:10.1038/35051650.
  • Frenzel, P., and E. Karofeld. 2000. “CH4 Emission from a Hollow-ridge Complex in a Raised Bog the Role of CH4 Production and Oxidation.” Biogeochemistry 51 (1): 91–112. doi:10.1023/A:1006351118347.
  • Frenzel, P., and J. Rudolph. 1998. “Methane Emission from a Wetland Plant the Role of CH4 Oxidation in Eriophorum.” Plant and Soil 202 (1): 27–32. doi:10.1023/A:1004348929219.
  • Fritz, C., V. A. Pancotto, J. T. M. Elzenga, E. J. W. Visser, A. P. Grootjans, A. Pol, R. Iturraspe, J. G. M. Roelofs, and A. J. P. Smolders. 2011. “Zero Methane Emission Bogs Extreme Rhizosphere Oxygenation by Cushion Plants in Patagonia.” New Phytologist 190 (2): 398–408. doi:10.1111/j.1469-8137.2010.03604.x.
  • Frolking, S., J. Talbot, M. C. Jones, C. C. Treat, J. B. Kauffman, E. S. Tuittila, and N. Roulet. 2011. “Peatlands in the Earth’s 21st Century Climate System.” Environmental Reviews 19 (NA): 371–396. doi:10.1139/a11-014.
  • Frolking, S., N. Roulet, and J. Fuglestvedt. 2006. “How Northern Peatlands Influence the Earth’s Radiative Budget: Sustained Methane Emission versus Sustained Carbon Sequestration.” Journal of Geophysical Research Biogeosciences 111: G01008. doi:10.1029/2005JG000091
  • Funk, D. W., E. R. Pullman, K. M. Peterson, P. M. Crill, and W. D. Billings. 1994. “Influence of Water Table on Carbon Dioxide, Carbon Monoxide, and Methane Fluxes from Taiga Bog Microcosms.” Global Biogeochemical Cycles 8 (3): 271–278. doi:10.1029/94GB01229.
  • Gallego-Sala, A. V., and I. C. Prentice. 2013. “Blanket Peat Biome Endangered by Climate Change.” Nature Climate Change 3 (2): 152–155. doi:10.1038/nclimate1672.
  • Gandois, L., A. R. Cobb, I. C. Hei, L. B. L. Lim, K. A. Salim, and C. F. Harvey. 2012. “Impact of Deforestation on Solid and Dissolved Organic Matter Characteristics of Tropical Peat Forests Implications for Carbon Release.” Biogeochemistry 114 (1–3): 183–199. doi:10.1007/s10533-012-9799-8.
  • Gandois, L., R. Teisserenc, A. R. Cobb, H. I. Chieng, L. B. L. Lim, A. S. Kamariah, A. Hoyt, and C. F. Harvey. 2014. “Origin, Composition, and Transformation of Dissolved Organic Matter in Tropical Peatlands.” Geochimica Et Cosmochimica Acta 137: 35–47. doi:10.1016/j.gca.2014.03.012.
  • Garnet, K. N., J. P. Megonigal, C. Litchfield, and G. E. Taylor. 2005. “Physiological Control of Leaf Methane Emission from Wetland Plants.” Aquatic Botany 81 (2): 141–155. doi:10.1016/j.aquabot.2004.10.003.
  • Garssen, A. G., J. T. A. Verhoeven, and M. B. Soons. 2014. “Effects of Climate-induced Increases in Summer Drought on Riparian Plant Species a Meta-analysis.” Freshwater Biology 59 (5): 1052–1063. doi:10.1111/fwb.12328.
  • Gavazov, K., R. Albrecht, A. Buttler, E. Dorrepaal, M. H. Garnett, S. Gogo, F. Hagedorn, R. T. E. Mills, B. J. M. Robroek, and L. Bragazza. 2018. “Vascular Plant-mediated Controls on Atmospheric Carbon Assimilation and Peat Carbon Decomposition under Climate Change.” Global Change Biology 24 (9): 3911–3921. doi:10.1111/gcb.14140.
  • Geisen, S. 2016. “The Bacterial-fungal Energy Channel Concept Challenged by Enormous Functional Versatility of Soil Protists.” Soil Biology and Biochemistry 102: 22–25. doi:10.1016/j.soilbio.2016.06.013.
  • Geisen, S., E. A. D. Mitchell, D. M. Wilkinson, S. Adl, M. Bonkowski, M. W. Brown, A. M. Fiore-Donno, et al. 2017. “Soil Protistology Rebooted 30 Fundamental Questions to Start With.” Soil Biology and Biochemistry 111: 94–103. doi:10.1016/j.soilbio.2017.04.001.
  • Gerdol, R., A. Bonora, R. Gualandri, and S. Pancaldi. 1996. “CO2 Exchange, Photosynthetic Pigment Composition, and Cell Ultrastructure of Sphagnum Mosses during Dehydration and Subsequent Rehydration.” Canadian Journal of Botany 74 (5): 726–734. doi:10.1139/b96-091.
  • Gibson, H. S., F. Worrall, T. P. Burt, and J. K. Adamson. 2009. “DOC Budgets of Drained Peat Catchments: Implications for DOC Production in Peat Soils.” Hydrological Processes 23 (13): 1901–1911. doi:10.1002/hyp.7296.
  • Gong, J. N., S. Kellomaki, K. Y. Wang, C. Zhang, N. Shurpali, and P. J. Martikainen. 2013. “Modeling CO2 and CH4 Flux Changes in Pristine Peatlands of Finland under Changing Climate Conditions.” Ecological Modelling 263: 64–80. doi:10.1016/j.ecolmodel.2013.04.018.
  • Goud, E. M., C. Watt, and T. R. Moore. 2018. “Plant Community Composition along a Peatland Margin Follows Alternate Successional Pathways after Hydrologic Disturbance.” Acta Oecologica-International Journal of Ecology 91: 65–72. doi:10.1016/j.actao.2018.06.006.
  • Goud, E. M., T. R. Moore, N. T. Roulet, and D. Whitehead. 2017. “Predicting Peatland Carbon Fluxes from Non-destructive Plant Traits.” Functional Ecology 31 (9): 1824–1833. doi:10.1111/1365-2435.12891.
  • Granath, G., J. Strengbom, and H. Rydin. 2010. “Rapid Ecosystem Shifts in Peatlands: Linking Plant Physiology and Succession.” Ecology 91 (10): 3047–3056. doi:10.1890/09-2267.1.
  • Gray, A., P. E. Levy, M. D. A. Cooper, T. Jones, J. Gaiawyn, S. R. Leeson, S. E. Ward, et al. 2013. “Methane Indicator Values for Peatlands a Comparison of Species and Functional Groups.” Global Change Biology 19 (4): 1141–1150. doi:10.1111/gcb.12120.
  • Green, S. M., and A. J. Baird. 2012. “A Mesocosm Study of the Role of the Sedge Eriophorum Angustifolium in the Efflux of Methane-including that Due to Episodic Ebullition-from Peatlands.” Plant and Soil 351 (1–2): 207–218. doi:10.1007/s11104-011-0945-1.
  • Greenup, A. L., M. A. Bradford, N. P. McNamara, P. Ineson, and J. A. Lee. 2000. “The Role of Eriophorum Vaginatum in CH4 Flux from an Ombrotrophic Peatland.” Plant and Soil 227 (1/2): 265–272. doi:10.1023/A:1026573727311.
  • Griffis, T. J., W. R. Rouse, and J. M. Waddington. 2000. “Interannual Variability of Net Ecosystem CO2 Exchange at a Subarctic Fen.” Global Biogeochemical Cycles 14 (4): 1109–1121. doi:10.1029/1999GB001243.
  • Griffiths, N. A., P. J. Hanson, D. M. Ricciuto, C. M. Iversen, A. M. Jensen, A. Malhotra, K. J. McFarlane, et al. 2017. “Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment.” Soil Science Society of America Journal 81 (6): 1668–1688. doi:10.2136/sssaj2016.12.0422.
  • Grosvernier, P., Y. Matthey, and A. Buttler. 1997. “Growth Potential of Three Sphagnum Species in Relation to Water Table Level and Peat Properties with Implications for Their Restoration in Cut- over Bogs.” Journal of Applied Ecology 34 (2): 471–483. doi:10.2307/2404891.
  • Grulke, N. E., G. H. Riechers, W. C. Oechel, U. Hjelm, and C. Jaeger. 1990. “Carbon Balance in Tussock Tundra under Ambient and Elevated Atmospheric CO2.” Oecologia 83 (4): 485–494. doi:10.1007/BF00317199.
  • Gunnarsson, U., N. Malmer, and H. Rydin. 2002. “Dynamics or Constancy in Sphagnum Dominated Mire Ecosystems? A 40-Year Study.” Ecography 25 (6): 685–704. doi:10.1034/j.1600-0587.2002.250605.x.
  • Günther, A., A. Barthelmes, V. Huth, H. Joosten, G. Jurasinski, F. Koebsch, and J. Couwenberg. 2020. “Prompt Rewetting of Drained Peatlands Reduces Climate Warming despite Methane Emissions.” Nature Communications 11 (1): 1644. doi:10.1038/s41467-020-15499-z.
  • Haddaway, N. R., A. Burden, C. D. Evans, J. R. Healey, D. L. Jones, S. E. Dalrymple, and A. S. Pullin. 2014. “Evaluating Effects of Land Management on Greenhouse Gas Fluxes and Carbon Balances in Boreo-temperate Lowland Peatland Systems.” Environmental Evidence 3 (1): 5. doi:10.1186/2047-2382-3-5.
  • Hajek, T., E. S. Tuittila, M. Ilomets, and R. Laiho. 2009. “Light Responses of Mire Mosses - a Key to Survival after Water-level Drawdown?” Oikos 118 (2): 240–250. doi:10.1111/j.1600-0706.2008.16528.x.
  • Hájek, T., and R. P. Beckett. 2008. “Effect of Water Content Components on Desiccation and Recovery in Sphagnum Mosses.” Annals of Botany 101 (1): 165–173. doi:10.1093/aob/mcm287.
  • Hansen, A. M., T. E. C. Kraus, B. A. Pellerin, J. A. Fleck, B. D. Downing, and B. A. Bergamaschi. 2016. “Optical Properties of Dissolved Organic Matter (DOM) Effects of Biological and Photolytic Degradation.” Limnology and Oceanography 61 (3): 1015–1032. doi:10.1002/lno.10270.
  • Hanson, R. S., and T. E. Hanson. 1996. “Methanotrophic Bacteria.” Microbiological Reviews 60 (2): 439–471. doi:10.1128/MMBR.60.2.439-471.1996.
  • Hargreaves, K. J., R. Milne, and M. G. R. Cannell. 2003. “Carbon Balance of Afforested Peatland in Scotland.” Forestry 76 (3): 299–317. doi:10.1093/forestry/76.3.299.
  • Harms, W. R., H. T. Schreuder, D. D. Hook, C. L. Brown, and F. W. Shropshire. 1980. “The Effects of Flooding on the Swamp Forest in Lake Ocklawaha, Florida.” Ecology 61 (6): 1412–1421. doi:10.2307/1939050.
  • Hayward, P. M., R. S. Clymo, and G. E. Fogg. 1982. “Profiles of Water Content and Pore Size in Sphagnum and Peat, and Their Relation to Peat Bog Ecology.” Proceedings of the Royal Society of London. Series B. Biological Sciences 215: 299–325.
  • Heijmans, M., D. Mauquoy, B. van Geel, and F. Berendse. 2008. “Long-term Effects of Climate Change on Vegetation and Carbon Dynamics in Peat Bogs.” Journal of Vegetation Science 19 (3): 307–U354. doi:10.3170/2008-8-18368.
  • Heijmans, M. M. P. D., F. Berendse, W. J. Arp, A. K. Masselink, H. Klees, W. De Visser, and N. Van Breemen. 2001. “Effects of Elevated Carbon Dioxide and Increased Nitrogen Deposition on Bog Vegetation in the Netherlands.” Journal of Ecology 89 (2): 268–279. doi:10.1046/j.1365-2745.2001.00547.x.
  • Heijmans, M. M. P. D., W. J. Arp, and F. S. Chapin III. 2004. “Controls on Moss Evaporation in a Boreal Black Spruce Forest.” Global Biogeochemical Cycles 18 (2). doi:10.1029/2003GB002128.
  • Helfter, C., C. Campbell, K. J. Dinsmore, J. Drewer, M. Coyle, M. Anderson, U. Skiba, E. Nemitz, M. F. Billett, and M. A. Sutton. 2015. “Drivers of Long-term Variability in CO2</sub> Net Ecosystem Exchange in a Temperate Peatland.” Biogeosciences 12 (6): 1799–1811. doi:10.5194/bg-12-1799-2015.
  • Hemes, K. S., S. D. Chamberlain, E. Eichelmann, S. H. Knox, and D. D. Baldocchi. 2018. “A Biogeochemical Compromise: The High Methane Cost of Sequestering Carbon in Restored Wetlands.” Geophysical Research Letters 45 (12): 6081–6091. doi:10.1029/2018GL077747.
  • Hendriks, D. M. D., J. van Huissteden, A. J. Dolman, and M. K. van der Molen. 2007. “The Full Greenhouse Gas Balance of an Abandoned Peat Meadow.” Biogeosciences 4 (3): 411–424. doi:10.5194/bg-4-411-2007.
  • Hirano, T., H. Segah, T. Harada, S. Limin, T. June, R. Hirata, and M. Osaki. 2007. “Carbon Dioxide Balance of a Tropical Peat Swamp Forest in Kalimantan, Indonesia.” Global Change Biology 13 (2): 412–425. doi:10.1111/j.1365-2486.2006.01301.x.
  • Hodgkins, S. B., C. J. Richardson, R. Dommain, H. Wang, P. H. Glaser, B. Verbeke, B. R. Winkler, et al. 2018. “Tropical Peatland Carbon Storage Linked to Global Latitudinal Trends in Peat Recalcitrance.” Nat Commun 9 (1): 3640. doi:10.1038/s41467-018-06050-2.
  • Holl, B. S., S. Fiedler, H. F. Jungkunst, K. Kalbitz, A. Freibauer, M. Drosler, and K. Stahr. 2009. “Characteristics of Dissolved Organic Matter following 20years of Peatland Restoration.” Science of the Total Environment 408 (1): 78–83. doi:10.1016/j.scitotenv.2009.08.046.
  • Holl, D., E. M. Pfeiffer, and L. Kutzbach. 2020. “Comparison of Eddy Covariance CO2 and CH4 Fluxes from Mined and Recently Rewetted Sections in a Northwestern German Cutover Bog.” Biogeosciences 17 (10): 2853–2874. doi:10.5194/bg-17-2853-2020.
  • Holmgren, M., C. Y. Lin, J. E. Murillo, A. Nieuwenhuis, J. Penninkhof, N. Sanders, T. van Bart, et al. 2015. “Positive Shrub-tree Interactions Facilitate Woody Encroachment in Boreal Peatlands.” Journal of Ecology 103 (1): 58–66. doi:10.1111/1365-2745.12331.
  • Hommeltenberg, J., H. P. Schmid, M. Drosler, and P. Werle. 2014. “Can a Bog Drained for Forestry Be a Stronger Carbon Sink than a Natural Bog Forest?” Biogeosciences 11 (13): 3477–3493. doi:10.5194/bg-11-3477-2014.
  • Hooijer, A., M. Silvius, H. Woesten, and S. Page, 2006. “PEAT-CO2, Assessment of CO2 Emissions from Drained Peatlands in SE Asia, Delft Hydraulics Report Q3943.”
  • Hooijer, A., S. Page, J. Jauhiainen, W. A. Lee, X. X. Lu, A. Idris, and G. Anshari. 2012. “Subsidence and Carbon Loss in Drained Tropical Peatlands.” Biogeosciences 9 (3): 1053–1071. doi:10.5194/bg-9-1053-2012.
  • Hornibrook, E. 2009. “The Stable Carbon Isotope Composition of Methane Produced and Emitted from Northern Peatlands.” Washington DC American Geophysical Union Geophysical Monograph Series 184: 187–203.
  • Hornibrook, E. R. C. 2013. “The Stable Carbon Isotope Composition of Methane Produced and Emitted from Northern Peatlands.” Geophysical Monograph 184: 187–203.
  • Hribljan, J., 2012. “The Effect of Long-term Water Table Manipulations on Vegetation, Pore Water, Substrate Quality, and Carbon Cycling in a Northern Poor Fen Peatland.” [Master thesis], Michigan Technological University.
  • Hribljan, J. A., E. S. Kane, T. G. Pypker, and R. A. Chimner. 2014. “The Effect of Long-term Water Table Manipulations on Dissolved Organic Carbon Dynamics in a Poor Fen Peatland.” Journal of Geophysical Research-Biogeosciences 119 (4): 577–595. doi:10.1002/2013JG002527.
  • Humphreys, E. R., C. Charron, M. Brown, and R. Jones. 2014. “Two Bogs in the Canadian Hudson Bay Lowlands and a Temperate Bog Reveal Similar Annual Net Ecosystem Exchange of CO2.” Arctic, Antarctic, and Alpine Research 46 (1): 103–113. doi:10.1657/1938-4246.46.1.103.
  • IPCC. 2013. “Climate Change 2013 The Physical Science Basis.” Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • Jaatinen, K., H. Fritze, J. Laine, and R. Laiho. 2007. “Effects of Short- and Long-term Water-level Drawdown on the Populations and Activity of Aerobic Decomposers in a Boreal Peatland.” Global Change Biology 13 (2): 491–510. doi:10.1111/j.1365-2486.2006.01312.x.
  • Jaatinen, K., R. Laiho, A. Vuorenmaa, U. Del Castillo, K. Minkkinen, T. Pennanen, T. Penttila, and H. Fritze. 2008. “Responses of Aerobic Microbial Communities and Soil Respiration to Water-level Drawdown in a Northern Boreal Fen.” Environmental Microbiology 10 (2): 339–353. doi:10.1111/j.1462-2920.2007.01455.x.
  • Järveoja, J., M. Peichl, M. Maddison, K. Soosaar, K. Vellak, E. Karofeld, A. Teemusk, and Ü. Mander. 2016. “Impact of Water Table Level on Annual Carbon and Greenhouse Gas Balances of a Restored Peat Extraction Area.” Biogeosciences 13 (9): 2637–2651. doi:10.5194/bg-13-2637-2016.
  • Jarveoja, J., M. B. Nilsson, M. Gazovic, P. M. Crill, and M. Peichl. 2018. “Partitioning of the Net CO2 Exchange Using an Automated Chamber System Reveals Plant Phenology as Key Control of Production and Respiration Fluxes in a Boreal Peatland.” Global Change Biology 24 (8): 3436–3451. doi:10.1111/gcb.14292.
  • Jassey, V. E. J., Ł. Lamentowicz, B. J. M. Robroek, M. Gąbka, A. Rusińska, M. Lamentowicz, and G. De Deyn. 2014. “Plant Functional Diversity Drives Niche-size-structure of Dominant Microbial Consumers along a Poor to Extremely Rich Fen Gradient.” Journal of Ecology 102 (5): 1150–1162. doi:10.1111/1365-2745.12288.
  • Jassey, V. E. J., and C. Signarbieux. 2019. “Effects of Climate Warming on Sphagnum Photosynthesis in Peatlands Depend on Peat Moisture and Species-specific Anatomical Traits.” Global Change Biology 25 (11): 3859–3870. doi:10.1111/gcb.14788.
  • Jassey, V. E. J., M. K. Reczuga, M. Zielinska, S. Slowinska, B. J. M. Robroek, P. Mariotte, C. V. W. Seppey, et al. 2018. “Tipping Point in Plant-fungal Interactions under Severe Drought Causes Abrupt Rise in Peatland Ecosystem Respiration.” Global Change Biology 24: 972–986.
  • Jauhiainen, J., A. Hooijer, and S. E. Page. 2012. “Carbon Dioxide Emissions from an Acacia Plantation on Peatland in Sumatra, Indonesia.” Biogeosciences 9 (2): 617–630. doi:10.5194/bg-9-617-2012.
  • Jauhiainen, J., H. Takahashi, J. E. P. Heikkinen, P. J. Martikainen, and H. Vasander. 2005. “Carbon Fluxes from a Tropical Peat Swamp Forest Floor.” Global Change Biology 11 (10): 1788–1797. doi:10.1111/j.1365-2486.2005.001031.x.
  • Joanisse, G. D., R. L. Bradley, C. M. Preston, and A. D. Munson. 2007. “Soil Enzyme Inhibition by Condensed Litter Tannins May Drive Ecosystem Structure and Processes: The Case of Kalmia Angustifolia.” The New Phytologist 175 (3): 535–546. doi:10.1111/j.1469-8137.2007.02113.x.
  • Joensuu, S., E. Ahti, and M. Vuollekoski. 2002. “Effects of Ditch Network Maintenance on the Chemistry of Run-off Water from peatlandfForests.” Scandinavian Journal of Forest Research 17 (3): 238–247. doi:10.1080/028275802753742909.
  • Jones, T. G., C. D. Evans, D. L. Jones, P. W. Hill, and C. Freeman. 2016. “Transformations in DOC along a Source to Sea Continuum; Impacts of Photo-degradation, Biological Processes and Mixing.” Aquatic Sciences 78 (3): 433–446. doi:10.1007/s00027-015-0461-0.
  • Joosten, H. 2009. The Global Peatland CO2 Picture Peatland Status and Drainage Related Emissions in All Countries of the World. Ede, the Netherlands: Wetlands International.
  • Jordan, S., M. Strömgren, L. Lundin, E. Lode, T. Nilsson, and J. Fiedler. 2016. “Ecosystem Respiration, Methane and Nitrous Oxide Fluxes from Ecotopes in a Rewetted Extracted Peatland in Sweden.” Mires and Peat 17(07): 1-23. doi:10.19189/MaP.2016.OMB.224
  • Jungkunst, H. F., and S. Fiedler. 2007. “Latitudinal Differentiated Water Table Control of Carbon Dioxide, Methane and Nitrous Oxide Fluxes from Hydromorphic Soils: Feedbacks to Climate Change.” Global Change Biology 13 (12): 2668–2683. doi:10.1111/j.1365-2486.2007.01459.x.
  • Juszczak, R., E. Humphreys, M. Acosta, M. Michalak-Galczewska, D. Kayzer, and J. Olejnik. 2013. “Ecosystem Respiration in a Heterogeneous Temperate Peatland and Its Sensitivity to Peat Temperature and Water Table Depth.” Plant and Soil 366 (1–2): 505–520. doi:10.1007/s11104-012-1441-y.
  • Kalbitz, K., and S. Geyer. 2002. “Different Effects of Peat Degradation on Dissolved Organic Carbon and Nitrogen.” Organic Geochemistry 33 (3): 319–326. doi:10.1016/S0146-6380(01)00163-2.
  • Kane, E. S., M. R. Turetsky, J. W. Harden, A. D. McGuire, and J. M. Waddington. 2010. “Seasonal Ice and Hydrologic Controls on Dissolved Organic Carbon and Nitrogen Concentrations in a Boreal-rich Fen.” Journal of Geophysical Research-Biogeosciences 115 (G4): 15. doi:10.1029/2010JG001366.
  • Kane, E. S., T. J. Veverica, M. M. Tfaily, E. A. Lilleskov, K. M. Meingast, R. K. Kolka, A. L. Daniels, and R. A. Chimner. 2019. “Reduction-Oxidation Potential and Dissolved Organic Matter Composition in Northern Peat Soil Interactive Controls of Water Table Position and Plant Functional Groups.” Journal of Geophysical Research-Biogeosciences 124 (11): 3600–3617. doi:10.1029/2019JG005339.
  • Kang, X., L. Yan, L. Cui, X. Zhang, Y. Hao, H. Wu, Y. Zhang, et al. 2018. “Reduced Carbon Dioxide Sink and Methane Source under Extreme Drought Condition in an Alpine Peatland.” Sustainability 10 (11): 4285. doi:10.3390/su10114285.
  • Kang, X. M., Y. B. Hao, X. Y. Cui, H. Chen, S. X. Huang, Y. G. Du, W. Li, P. Kardol, X. M. Xiao, and L. J. Cui. 2016. “Variability and Changes in Climate, Phenology, and Gross Primary Production of an Alpine Wetland Ecosystem.” Remote Sensing 8 (5): 14. doi:10.3390/rs8050391.
  • Kangas, L., L. Maanavilja, T. Hajek, E. Juurola, R. A. Chimner, L. Mehtatalo, and E. S. Tuittila. 2014. “Photosynthetic Traits of Sphagnum and Feather Moss Species in Undrained, Drained and Rewetted Boreal Spruce Swamp Forests.” Ecology and Evolution 4 (4): 381–396. doi:10.1002/ece3.939.
  • Kareksela, S., T. Haapalehto, R. Juutinen, R. Matilainen, T. Tahvanainen, and J. S. Kotiaho. 2015. “Fighting Carbon Loss of Degraded Peatlands by Jump-starting Ecosystem Functioning with Ecological Restoration.” Science of the Total Environment 537: 268–276. doi:10.1016/j.scitotenv.2015.07.094.
  • Karki, S., L. Elsgaard, T. P. Kandel, and P. E. Lærke. 2016. “Carbon Balance of Rewetted and Drained Peat Soils Used for Biomass Production a Mesocosm Study.” Global Change Biology Bioenergy 8 (5): 969–980. doi:10.1111/gcbb.12334.
  • Kasimir, A., H. X. He, J. Coria, and A. Norden. 2018. “Land Use of Drained Peatlands Greenhouse Gas Fluxes, Plant Production, and Economics.” Global Change Biology 24 (8): 3302–3316. doi:10.1111/gcb.13931.
  • Kellner, E., J. S. Price, and J. M. Waddington. 2004. “Pressure Variations in Peat as a Result of Gas Bubble Dynamics.” Hydrological Processes 18 (13): 2599–2605. doi:10.1002/hyp.5650.
  • Kelly, C. A., J. W. M. Rudd, R. A. Bodaly, N. P. Roulet, V. L. St.Louis, A. Heyes, T. R. Moore, et al. 1997. “Increases in Fluxes of Greenhouse Gases and Methyl Mercury following Flooding of an Experimental Reservoir †.” Environmental Science & Technology 31 (5): 1334–1344. doi:10.1021/es9604931.
  • Ketcheson, S. J., and J. S. Price. 2014. “Characterization of the Fluxes and Stores of Water within Newly Formed Sphagnum Moss Cushions and Their Environment.” Ecohydrology 7 (2): 771–782. doi:10.1002/eco.1399.
  • Kettles, I. M., and C. Tarnocai. 1999. “Development of a Model for Estimating the Sensitivity of Canadian Peatlands to Climate Warming.” Geographie Physique Et Quaternaire 53 (3): 323–338. doi:10.7202/004838ar.
  • Khasanah, N., and M. van Noordwijk. 2019. “Subsidence and Carbon Dioxide Emissions in a Smallholder Peatland Mosaic in Sumatra, Indonesia.” Mitigation and Adaptation Strategies for Global Change 24 (1): 147–163. doi:10.1007/s11027-018-9803-2.
  • King, J. Y., W. S. Reeburgh, and S. K. Regli. 1998. “Methane Emission and Transport by Arctic Sedges in Alaska Results of a Vegetation Removal Experiment.” Journal of Geophysical Research Atmospheres 103 (D22): 29083–29092. doi:10.1029/98JD00052.
  • Kip, N., J. F. van Winden, Y. Pan, L. Bodrossy, G.-J. Reichart, A. J. P. Smolders, M. S. M. Jetten, J. S. S. Damsté, and H. J. M. Op den Camp. 2010. “Global Prevalence of Methane Oxidation by Symbiotic Bacteria in Peat-moss Ecosystems.” Nature Geoscience 3 (9): 617–621. doi:10.1038/ngeo939.
  • Knox, S. H., C. Sturtevant, J. H. Matthes, L. Koteen, J. Verfaillie, and D. Baldocchi. 2015. “Agricultural Peatland Restoration: Effects of Land-use Change on Greenhouse Gas (CO2 and CH4) Fluxes in the Sacramento-San Joaquin Delta.” Global Change Biology 21 (2): 750–765. doi:10.1111/gcb.12745.
  • Koehler, A. K., M. Sottocornola, and G. Kiely. 2011. “How Strong Is the Current Carbon Sequestration of an Atlantic Blanket Bog?” Global Change Biology 17 (1): 309–319. doi:10.1111/j.1365-2486.2010.02180.x.
  • Kokkonen, N. A. K., A. M. Laine, J. Laine, H. Vasander, K. Kurki, J. N. Gong, E. S. Tuittila, and B. Collins. 2019. “Responses of Peatland Vegetation to 15-year Water Level Drawdown as Mediated by Fertility Level.” Journal of Vegetation Science 30 (6): 1206–1216. doi:10.1111/jvs.12794.
  • Komulainen, V. M., E. S. Tuittila, H. Vasander, and J. Laine. 1999. “Restoration of Drained Peatlands in Southern Finland: Initial Effects on Vegetation Change and CO2 Balance.” Journal of Applied Ecology 36 (5): 634–648. doi:10.1046/j.1365-2664.1999.00430.x.
  • Komulainen, V. M., H. Nykanen, P. J. Martikainen, and J. Laine. 1998. “Short-term Effect of Restoration on Vegetation Change and Methane Emissions from Peatlands Drained for Forestry in Southern Finland.” Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 28 (3): 402–411. doi:10.1139/x98-011.
  • Korrensalo, A., T. Hajek, T. Vesala, L. Mehtatalo, and E. S. Tuittila. 2016. “Variation in Photosynthetic Properties among Bog Plants.” Botany 94 (12): 1127–1139. doi:10.1139/cjb-2016-0117.
  • Koskinen, M., L. Maanavilja, M. Nieminen, K. Minkkinen, and E. S. Tuittila. 2016. “High Methane Emissions from Restored Norway Spruce Swamps in Southern Finland over One Growing Season.” Mires and Peat 17: 13.
  • Kotiaho, M., H. Fritze, P. Merilä, T. Tuomivirta, M. Väliranta, A. Korhola, E. Karofeld, and E.-S. Tuittila. 2013. “Actinobacteria Community Structure in the Peat Profile of Boreal Bogs Follows a Variation in the Microtopographical Gradient Similar to Vegetation.” Plant and Soil 369 (1–2): 103–114. doi:10.1007/s11104-012-1546-3.
  • Kozlowski, T. T. 1997. “Responses of Woody Plants to Flooding and Salinity.” Tree Physiology 17 (7): 490. doi:10.1093/treephys/17.7.490.
  • Kuiper, J. J., W. M. Mooij, L. Bragazza, and B. J. M. Robroek. 2014. “Plant Functional Types Define Magnitude of Drought Response in Peatland CO2 Exchange.” Ecology 95 (1): 123–131. doi:10.1890/13-0270.1.
  • Lafleur, P. M., T. R. Moore, N. T. Roulet, and S. Frolking. 2005. “Ecosystem Respiration in a Cool Temperate Bog Depends on Peat Temperature but Not Water Table.” Ecosystems 8 (6): 619–629. doi:10.1007/s10021-003-0131-2.
  • Lai, D. Y. F. 2009. “Methane Dynamics in Northern Peatlands A Review.” Pedosphere 19 (4): 409–421. doi:10.1016/S1002-0160(09)00003-4.
  • Laiho, R. 2006. “Decomposition in Peatlands Reconciling Seemingly Contrasting Results on the Impacts of Lowered Water Levels.” Soil Biology & Biochemistry 38 (8): 2011–2024. doi:10.1016/j.soilbio.2006.02.017.
  • Laiho, R., H. Vasander, T. Penttila, and J. Laine. 2003. “Dynamics of Plant-mediated Organic Matter and Nutrient Cycling following Water-level Drawdown in Boreal Peatlands.” Global Biogeochemical Cycles 17 (2): 11. doi:10.1029/2002GB002015.
  • Laiho, R., J. Laine, C. C. Trettin, and L. Finer. 2004. “Scots Pine Litter Decomposition along Drainage Succession and Soil Nutrient Gradients in Peatland Forests, and the Effects of Inter-annual Weather Variation.” Soil Biology & Biochemistry 36 (7): 1095–1109. doi:10.1016/j.soilbio.2004.02.020.
  • Laiho, R., N. Silvan, H. Carcamo, and H. Vasander. 2001. “Effects of Water Level and Nutrients on Spatial Distribution of Soil Mesofauna in Peatlands Drained for Forestry in Finland.” Applied Soil Ecology 16 (1): 1–9. doi:10.1016/S0929-1393(00)00103-7.
  • Laine, A., K. A. Byrne, G. Kiely, and E. S. Tuittila. 2007. “Patterns in Vegetation and CO2 Dynamics along a Water Level Gradient in a Lowland Blanket Bog.” Ecosystems 10 (6): 890–905. doi:10.1007/s10021-007-9067-2.
  • Laine, A. M., A. Tolvanen, L. M. Atalo, and E. S. Tuittila. 2016. “Vegetation Structure and Photosynthesis Respond Rapidly to Restoration in Young Coastal Fens.” Ecology and Evolution 6 (19): 6880–6891. doi:10.1002/ece3.2348.
  • Laine, A. M., E. Juurola, T. Hajek, and E. S. Tuittila. 2011. “Sphagnum Growth and Ecophysiology during Mire Succession.” Oecologia 167 (4): 1115–1125. doi:10.1007/s00442-011-2039-4.
  • Laine, A. M., J. Bubier, T. Riutta, M. B. Nilsson, T. R. Moore, H. Vasander, and E. S. Tuittila. 2012. “Abundance and Composition of Plant Biomass as Potential Controls for Mire Net Ecosystem CO2 Exchange.” Botany 90 (1): 63–74. doi:10.1139/b11-068.
  • Laine, A. M., K. A. Byrne, G. Kiely, and E. S. Tuittila. 2009. “The Short-term Effect of Altered Water Level on Carbon Dioxide and Methane Fluxes in a Blanket Bog.” Suo 60: 65–83.
  • Laine, A. M., L. Mehtatalo, A. Tolvanen, S. Frolking, and E. S. Tuittila. 2019b. “Impacts of Drainage, Restoration and Warming on Boreal Wetland Greenhouse Gas Fluxes.” Science of the Total Environment 647: 169–181. doi:10.1016/j.scitotenv.2018.07.390.
  • Laine, A. M., P. Makiranta, R. Laiho, L. Mehtatalo, T. Penttila, A. Korrensalo, K. Minkkinen, H. Fritze, and E. S. Tuittila. 2019a. “Warming Impacts on Boreal Fen CO2 Exchange under Wet and Dry Conditions.” Global Change Biology 25 (6): 1995–2008. doi:10.1111/gcb.14617.
  • Laine, J., H. Vasander, and R. Laiho. 1995. “Long-term Effects of Water Level Drawdown on the Vegetation of Drained Pine Mires in Southern Finland.” Journal of Applied Ecology 32 (4): 785–802. doi:10.2307/2404818.
  • Laing, C. G., G. Granath, L. R. Belyea, K. E. Allton, and H. Rydin. 2014. “Tradeoffs and Scaling of Functional Traits in Sphagnum as Drivers of Carbon Cycling in Peatlands.” Oikos 123 (7): 817–828. doi:10.1111/oik.01061.
  • Lamentowicz, M., L. Bragazza, A. Buttler, V. E. J. Jassey, and E. A. D. Mitchell. 2013. “Seasonal Patterns of Testate Amoeba Diversity, Community Structure and Species–environment Relationships in Four Sphagnum-dominated Peatlands along a 1300 M Altitudinal Gradient in Switzerland.” Soil Biology and Biochemistry 67: 1–11. doi:10.1016/j.soilbio.2013.08.002.
  • Larmola, T., E.-S. Tuittila, M. Tiirola, H. Nykänen, P. J. Martikainen, K. Yrjälä, T. Tuomivirta, and H. Fritze. 2010. “The Role of Sphagnum Mosses in the Methane Cycling of a Boreal Mire.” Ecology 91 (8): 2356–2365. doi:10.1890/09-1343.1.
  • Latter, P. M., J. B. Cragg, and O. W. Heal. 1967. “Comparative Studies on the Microbiology of Four Moorland Soils in the Northern Pennines.” Journal of Ecology 55 (2): 445–464. doi:10.2307/2257887.
  • Lazcano, C., A. S. Deol, M. E. Brummell, and M. Strack. 2020. “Interactive Effects of Vegetation and Water Table Depth on Belowground C and N Mobilization and Greenhouse Gas Emissions in a Restored Peatland.” Plant and Soil 448 (1–2): 299–313. doi:10.1007/s11104-020-04434-2.
  • Lazcano, C., C. Robinson, G. Hassanpour, and M. Strack. 2018. “Short-term Effects of Fen Peatland Restoration through the Moss Layer Transfer Technique on the Soil CO2 and CH4 Efflux.” Ecological Engineering 125: 149–158. doi:10.1016/j.ecoleng.2018.10.018.
  • Lee, S. C., A. Christen, A. T. Black, M. S. Johnson, R. S. Jassal, R. Ketler, Z. Nesic, and M. Merkens. 2017. “Annual Greenhouse Gas Budget for a Bog Ecosystem Undergoing Restoration by Rewetting.” Biogeosciences 14 (11): 2799–2814. doi:10.5194/bg-14-2799-2017.
  • Lehtonen, I., K. Ruosteenoja, and K. Jylha. 2014. “Projected Changes in European Extreme Precipitation Indices on the Basis of Global and Regional Climate Model Ensembles.” International Journal of Climatology 34 (4): 1208–1222. doi:10.1002/joc.3758.
  • Leifeld, J., and L. Menichetti. 2018. “The Underappreciated Potential of Peatlands in Global Climate Change Mitigation Strategies.” Nature Communications 97: 1071. doi:10.1038/s41467-018-03406-6
  • Leifeld, J., M. Steffens, and A. Galego-Sala. 2012. “Sensitivity of Peatland Carbon Loss to Organic Matter Quality.” Geophysical Research Letters 39 (14). doi:10.1029/2012GL051856.
  • Levy, P. E., A. Burden, M. D. A. Cooper, K. J. Dinsmore, J. Drewer, C. Evans, D. Fowler, et al. 2012. “Methane Emissions from Soils Synthesis and Analysis of a Large UK Data Set.” Global Change Biology 18 (5): 1657–1669. doi:10.1111/j.1365-2486.2011.02616.x.
  • Li, T. T., Q. Zhang, Z. G. Cheng, G. C. Wang, L. J. Yu, and W. Zhang. 2017. “Performance of CH4MOD(wetland) for the Case Study of Different Regions of Natural Chinese Wetland.” Journal of Environmental Sciences 57: 356–369. doi:10.1016/j.jes.2017.01.001.
  • Li, -T.-T., Z.-X. Wang, G.-J. Bu, L.-Q. Lin, Y. Lei, C.-Y. Liu, L.-F. Yang, and C.-L. Zheng. 2019. “Effects of Microtopography and Water Table on Sphagnum Palustre L. In Subtropical High Mountains and Implications for Peatland Restoration.” Journal of Bryology 41 (2): 121–134. doi:10.1080/03736687.2019.1601446.
  • Li, W. H., R. E. Dickinson, R. Fu, G. Y. Niu, Z. L. Yang, and J. G. Canadell. 2007. “Future Precipitation Changes and Their Implications for Tropical Peatlands.” Geophysical Research Letters 34 (1): 6. doi:10.1029/2006GL028364.
  • Liu, Y., Z. Ding, C. Bachofen, Y. J. Lou, M. Jiang, X. G. Tang, X. G. Lu, and N. Buchmann. 2018. “The Effect of Saline-alkaline and Water Stresses on Water Use Efficiency and Standing Biomass of Phragmites Australis and Bolboschoenus Planiculmis.” Science of the Total Environment 644: 207–216. doi:10.1016/j.scitotenv.2018.05.321.
  • Lohila, A., K. Minkkinen, M. Aurela, J. P. Tuovinen, T. Penttila, P. Ojanen, and T. Laurila. 2011. “Greenhouse Gas Flux Measurements in a Forestry-drained Peatland Indicate a Large Carbon Sink.” Biogeosciences 8 (11): 3203–3218. doi:10.5194/bg-8-3203-2011.
  • Lohila, A., T. Laurila, L. Aro, M. Aurela, J. P. Tuovinen, J. Laine, P. Kolari, and K. Minkkinen. 2007. “Carbon Dioxide Exchange above a 30-year-old Scots Pine Plantation Established on Organic-soil Cropland.” Boreal Environment Research 12: 141–157.
  • Loisel, J., Z. C. Yu, D. W. Beilman, P. Camill, J. Alm, M. J. Amesbury, D. Anderson, et al. 2014. “A Database and Synthesis of Northern Peatland Soil Properties and Holocene Carbon and Nitrogen Accumulation.” The Holocene 24 (9): 1028–1042. doi:10.1177/0959683614538073.
  • Long, S. P. 1991. “Modification of the Response of Photosynthetic Productivity to Rising Temperature by Atmospheric CO2 Concentrations: Has Its Importance Been Underestimated?” Plant, Cell and Environment 14 (8): 729–739. doi:10.1111/j.1365-3040.1991.tb01439.x.
  • Lou, X. D., S. Q. Zhai, B. Kang, Y. L. Hu, L. L. Hu, and S. Wang. 2014. “Rapid Response of Hydrological Loss of DOC to Water Table Drawdown and Warming in Zoige Peatland Results from a Mesocosm Experiment.” Plos One 9 (11): 9. doi:10.1371/journal.pone.0109861.
  • Lund, M., T. R. Christensen, A. Lindroth, and P. Schubert. 2012. “Effects of Drought Conditions on the Carbon Dioxide Dynamics in a Temperate Peatland.” Environmental Research Letters 7 (4): 045704. doi:10.1088/1748-9326/7/4/045704.
  • Luo, Y., D. Gerten, G. Le Maire, W. J. Parton, E. Weng, X. Zhou, C. Keough, et al. 2008. “Modeled Interactive Effects of Precipitation, Temperature, and [CO2] on Ecosystem Carbon and Water Dynamics in Different Climatic Zones.” Global Change Biology 14 (9): 1986–1999. doi:10.1111/j.1365-2486.2008.01629.x.
  • Ma, K., J. G. Liu, J. Balkovic, R. Skalsky, L. B. Azevedo, and F. Kraxner. 2016. “Changes in Soil Organic Carbon Stocks of Wetlands on China’s Zoige Plateau from 1980 to 2010.” Ecological Modelling 327: 18–28. doi:10.1016/j.ecolmodel.2016.01.009.
  • Maanavilja, L., K. Aapala, T. Haapalehto, J. S. Kotiaho, and E. S. Tuittila. 2014. “Impact of Drainage and Hydrological Restoration on Vegetation Structure in Boreal Spruce Swamp Forests.” Forest Ecology and Management 330: 115–125. doi:10.1016/j.foreco.2014.07.004.
  • Maanavilja, L., L. Kangas, L. Mehtatalo, E. S. Tuittila, and J. Müller. 2015. “Rewetting of Drained Boreal Spruce Swamp Forests Results in Rapid Recovery of Sphagnum Production.” Journal of Applied Ecology 52 (5): 1355–1363. doi:10.1111/1365-2664.12474.
  • Macdonald, S. E., and F. Y. Yin. 1999. “Factors Influencing Size Inequality in Peatland Black Spruce and Tamarack Evidence from Post-drainage Release Growth.” Journal of Ecology 87 (3): 404–412. doi:10.1046/j.1365-2745.1999.00370.x.
  • Macrae, M. L., K. J. Devito, M. Strack, and J. M. Waddington. 2013. “Effect of Water Table Drawdown on Peatland Nutrient Dynamics: Implications for Climate Change.” Biogeochemistry 112 (1–3): 661–676. doi:10.1007/s10533-012-9730-3.
  • Maestre, F. T., F. Valladares, and J. F. Reynolds. 2005. “Is the Change of Plant-plant Interactions with Abiotic Stress Predictable? A Meta-analysis of Field Results in Arid Environments.” Journal of Ecology 93 (4): 748–757. doi:10.1111/j.1365-2745.2005.01017.x.
  • Mahmood, M. S., and M. Strack. 2011. “Methane Dynamics of Recolonized Cutover Minerotrophic Peatland Implications for Restoration.” Ecological Engineering 37 (11): 1859–1868. doi:10.1016/j.ecoleng.2011.06.007.
  • Makiranta, P., R. Laiho, H. Fritze, J. Hytonen, J. Laine, and K. Minkkinen. 2009. “Indirect Regulation of Heterotrophic Peat Soil Respiration by Water Level via Microbial Community Structure and Temperature Sensitivity.” Soil Biology & Biochemistry 41 (4): 695–703. doi:10.1016/j.soilbio.2009.01.004.
  • Makiranta, P., R. Laiho, L. Mehtatalo, P. Strakova, J. Sormunen, K. Minkkinen, T. Penttila, H. Fritze, and E. S. Tuittila. 2018. “Responses of Phenology and Biomass Production of Boreal Fens to Climate Warming under Different Water-table Level Regimes.” Global Change Biology 24 (3): 944–956. doi:10.1111/gcb.13934.
  • Malhotra, A., N. T. Roulet, P. Wilson, X. Giroux-Bougard, and L. I. Harris. 2016. “Ecohydrological Feedbacks in Peatlands an Empirical Test of the Relationship among Vegetation, Microtopography and Water Table.” Ecohydrology 9 (7): 1346–1357. doi:10.1002/eco.1731.
  • Maljanen, M., B. D. Sigurdsson, J. Guomundsson, H. Oskarsson, J. T. Huttunen, and P. J. Martikainen. 2010. “Greenhouse Gas Balances of Managed Peatlands in the Nordic Countries - Present Knowledge and Gaps.” Biogeosciences 7 (9): 2711–2738. doi:10.5194/bg-7-2711-2010.
  • Mallakpour, I., and G. Villarini. 2015. “The Changing Nature of Flooding across the central United States.” Nature Climate Change 5 (3): 250–254. doi:10.1038/nclimate2516.
  • Marinier, M., S. Glatzel, and T. R. Moore. 2004. “The Role of Cotton-grass (Eriophorum Vaginatum) in the Exchange of CO2 and CH4 at Two Restored Peatlands, Eastern Canada.” Écoscience 11 (2): 141–149. doi:10.1080/11956860.2004.11682818.
  • Marushchak, M. E., T. Friborg, C. Biasi, M. Herbst, T. Johansson, I. Kiepe, M. Liimatainen, et al. 2016. “Methane Dynamics in the Subarctic Tundra Combining Stable Isotope Analyses, Plot- and Ecosystem-scale Flux Measurements.” Biogeosciences 13 (2): 597–608. doi:10.5194/bg-13-597-2016.
  • Mastný, J., E. Kaštovská, J. Bárta, A. Chroňáková, J. Borovec, H. Šantrůčková, Z. Urbanová, K. R. Edwards, and T. Picek. 2018. “Quality of DOC Produced during Litter Decomposition of Peatland Plant Dominants.” Soil Biology and Biochemistry 121: 221–230. doi:10.1016/j.soilbio.2018.03.018.
  • Mathijssen, P. J. H., M. Galka, W. Borken, and K. H. Knorr. 2019. “Plant Communities Control Long Term Carbon Accumulation and Biogeochemical Gradients in a Patagonian Bog.” Science of the Total Environment 684: 670–681. doi:10.1016/j.scitotenv.2019.05.310.
  • Matysek, M., J. Leake, S. Banwart, I. Johnson, S. Page, J. Kaduk, A. Smalley, A. Cumming, and D. Zona. 2019. “Impact of Fertiliser, Water Table, and Warming on Celery Yield and CO2 and CH4 Emissions from Fenland Agricultural Peat.” Science of the Total Environment 667: 179–190. doi:10.1016/j.scitotenv.2019.02.360.
  • McCarter, C. P. R., and J. S. Price. 2014. “Ecohydrology of Sphagnum Moss Hummocks: Mechanisms of Capitula Water Supply and Simulated Effects of Evaporation.” Ecohydrology 7 (1): 33–44. doi:10.1002/eco.1313.
  • McLatchey, G. P., and K. R. Reddy. 1998. “Regulation of Organic Matter Decomposition and Nutrient Release in a Wetland Soil.” Journal of Environmental Quality 27 (5): 1268–1274. doi:10.2134/jeq1998.00472425002700050036x.
  • McNamara, N. P., T. Plant, S. Oakley, S. Ward, C. Wood, and N. Ostle. 2008. “Gully Hotspot Contribution to Landscape Methane (CH4) and Carbon Dioxide (CO2) Fluxes in a Northern Peatland.” Science of the Total Environment 404 (2–3): 354–360. doi:10.1016/j.scitotenv.2008.03.015.
  • McNeil, P., and J. M. Waddington. 2003. “Moisture Controls on Sphagnum Growth and CO2 Exchange on a Cutover Bog.” Journal of Applied Ecology 40 (2): 354–367. doi:10.1046/j.1365-2664.2003.00790.x.
  • McPartland, M. Y., E. S. Kane, M. J. Falkowski, R. Kolka, M. R. Turetsky, B. Palik, and R. A. Montgomery. 2019. “The Response of Boreal Peatland Community Composition and NDVI to Hydrologic Change, Warming, and Elevated Carbon Dioxide.” Global Change Biology 25 (1): 93–107. doi:10.1111/gcb.14465.
  • McVeigh, P., M. Sottocornola, N. Foley, P. Leahy, and G. Kiely. 2014. “Meteorological and Functional Response Partitioning to Explain Interannual Variability of CO2 Exchange at an Irish Atlantic Blanket Bog.” Agricultural and Forest Meteorology 194: 8–19. doi:10.1016/j.agrformet.2014.01.017
  • Medlyn, B. E., E. Dreyer, D. Ellsworth, M. Forstreuter, P. C. Harley, M. U. F. Kirschbaum, X. Le Roux, et al. 2002. “Temperature Response of Parameters of A Biochemically Based Model of Photosynthesis. II. A Review of Experimental Data.” Plant, Cell & Environment 25 (9): 1167–1179. doi:10.1046/j.1365-3040.2002.00891.x.
  • Menberu, M. W., A. T. Haghighi, A.-K. Ronkanen, H. Marttila, and B. Kløve. 2018. “Effects of Drainage and Subsequent Restoration on Peatland Hydrological Processes at Catchment Scale.” Water Resources Research 54 (7): 4479–4497. doi:10.1029/2017WR022362.
  • Menberu, M. W., H. Marttila, T. Tahvanainen, J. S. Kotiaho, R. Hokkanen, B. Kløve, and A.-K. Ronkanen. 2017. “Changes in Pore Water Quality after Peatland Restoration Assessment of a Large-Scale, Replicated Before-After-Control-Impact Study in Finland.” Water Resources Research 53 (10): 8327–8343. doi:10.1002/2017WR020630.
  • Meyer, A., L. Tarvainen, A. Nousratpour, R. G. Björk, M. Ernfors, A. Grelle, Å. Kasimir Klemedtsson, et al. 2013. “A Fertile Peatland Forest Does Not Constitute A Major Greenhouse Gas Sink.” Biogeosciences 10 (11): 7739–7758. doi:10.5194/bg-10-7739-2013.
  • Miao, Y., C. Song, L. Sun, X. Wang, H. Meng, and R. Mao. 2012. “Growing Season Methane Emission from a Boreal Peatland in the Continuous Permafrost Zone of Northeast China Effects of Active Layer Depth and Vegetation.” Biogeosciences 9 (11): 4455–4464. doi:10.5194/bg-9-4455-2012.
  • Minkkinen, K., H. Vasander, S. Jauhiainen, M. Karsisto, and J. Laine. 1999. “Post-drainage Changes in Vegetation Composition and Carbon Balance in Lakkasuo Mire, Central Finland.” Plant and Soil 207 (1): 107–120. doi:10.1023/A:1004466330076.
  • Minkkinen, K., and J. Laine. 1998. “Long-term Effect of Forest Drainage on the Peat Carbon Stores of Pine Mires in Finland.” Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 28 (9): 1267–1275. doi:10.1139/x98-104.
  • Minkkinen, K., R. Korhonen, I. Savolainen, and J. Laine. 2002. “Carbon Balance and Radiative Forcing of Finnish Peatlands 1900-2100 - the Impact of Forestry Drainage.” Global Change Biology 8 (8): 785–799. doi:10.1046/j.1365-2486.2002.00504.x.
  • Mitchell, C. C., and W. A. Niering. 1993. “Vegetation Change in a Topogenic Bog following Beaver Flooding.” Bulletin of the Torrey Botanical Club 120 (2): 136–147. doi:10.2307/2996943.
  • Mitsch, W. J., A. Nahlik, P. Wolski, B. Bernal, L. Zhang, and L. Ramberg. 2009. “Tropical Wetlands Seasonal Hydrologic Pulsing, Carbon Sequestration, and Methane Emissions.” Wetlands Ecology and Management 18 (5): 573–586. doi:10.1007/s11273-009-9164-4.
  • Monier, E., A. Sokolov, A. Schlosser, J. Scott, and X. Gao. 2013. “Probabilistic Projections of 21st Century Climate Change over Northern Eurasia.” Environmental Research Letters 8 (4): 9. doi:10.1088/1748-9326/8/4/045008.
  • Moomaw, W. R., G. L. Chmura, G. T. Davies, C. M. Finlayson, B. A. Middleton, S. M. Natali, J. E. Perry, N. Roulet, and A. E. Sutton-Grier. 2018. “Wetlands in a Changing Climate Science, Policy and Management.” Wetlands 38 (2): 183–205. doi:10.1007/s13157-018-1023-8.
  • Moore, P. A., P. J. Morris, and J. M. Waddington. 2015. “Multi-decadal Water Table Manipulation Alters Peatland Hydraulic Structure and Moisture Retention.” Hydrological Processes 29 (13): 2970–2982. doi:10.1002/hyp.10416.
  • Moore, S., C. D. Evans, S. E. Page, M. H. Garnett, T. G. Jones, C. Freeman, A. Hooijer, A. J. Wiltshire, S. H. Limin, and V. Gauci. 2013. “Deep Instability of Deforested Tropical Peatlands Revealed by Fluvial Organic Carbon Fluxes.” Nature 493 (7434): 660. doi:10.1038/nature11818.
  • Moore, T. R., A. De Young, J. L. Bubier, E. R. Humphreys, P. M. Lafleur, and N. T. Roulet. 2011. “A Multi-Year Record of Methane Flux at the Mer Bleue Bog, Southern Canada.” Ecosystems 14 (4): 646–657. doi:10.1007/s10021-011-9435-9
  • Moore, T. R., J. L. Bubier, S. E. Frolking, P. M. Lafleur, and N. T. Roulet. 2002. “Plant Biomass and Production and CO2 Exchange in an Ombrotrophic Bog.” Journal of Ecology 90 (1): 25–36. doi:10.1046/j.0022-0477.2001.00633.x.
  • Moore, T. R., and M. Dalva. 1997. “Methane and Carbon Dioxide Exchange Potentials of Peat Soils in Aerobic and Anaerobic Laboratory Incubations.” Soil Biology & Biochemistry 29 (8): 1157–1164. doi:10.1016/S0038-0717(97)00037-0.
  • Moore, T. R., and R. Knowles. 1989. “The Influence Of Water-Table Levels On Methane And Carbon-Dioxide Emissions From Peatland Soils.” Canadian Journal of Soil Science 69 (1): 33–38. doi:10.4141/cjss89-004.
  • Morris, P. J., J. M. Waddington, B. W. Benscoter, and M. R. Turetsky. 2011. “Conceptual Frameworks in Peatland Ecohydrology: Looking beyond the Two-layered (Acrotelm-catotelm) Model.” Ecohydrology 4 (1): 1–11. doi:10.1002/eco.191.
  • Munir, T. M., B. Xu, M. Perkins, and M. Strack. 2014. “Responses of Carbon Dioxide Flux and Plant Biomass to Water Table Drawdown in a Treed Peatland in Northern Alberta a Climate Change Perspective.” Biogeosciences 11 (3): 807–820. doi:10.5194/bg-11-807-2014.
  • Munir, T. M., M. Perkins, E. Kaing, and M. Strack. 2015. “Carbon Dioxide Flux and Net Primary Production of a Boreal Treed Bog Responses to Warming and Water-table-lowering Simulations of Climate Change.” Biogeosciences 12 (4): 1091–1111. doi:10.5194/bg-12-1091-2015.
  • Munir, T. M., and M. Strack. 2014. “Methane Flux Influenced by Experimental Water Table Drawdown and Soil Warming in a Dry Boreal Continental Bog.” Ecosystems 17 (7): 1271–1285. doi:10.1007/s10021-014-9795-z.
  • Murdiyarso, D., M. F. Saragi-Sasmito, and A. Rustini. 2019. “Greenhouse Gas Emissions in Restored Secondary Tropical Peat Swamp Forests.” Mitigation and Adaptation Strategies for Global Change 24 (4): 507–520. doi:10.1007/s11027-017-9776-6.
  • Murphy, M., R. Laiho, and T. R. Moore. 2009. “Effects of Water Table Drawdown on Root Production and Aboveground Biomass in a Boreal Bog.” Ecosystems 12 (8): 1268–1282. doi:10.1007/s10021-009-9283-z.
  • Murray, K. J., J. D. Tenhunen, and J. Kummerow. 1989. “Limitations on Sphagnum Growth and Net Primary Production in the Foothills of the Philip Smith Mountains, Alaska.” Oecologia 80 (2): 256–262. doi:10.1007/BF00380160.
  • Murray, K. J., J. D. Tenhunen, and R. S. Nowak. 1993. “Photoinhibition as a Control on Photosynthesis and Production of Sphagnum Mosses.” Oecologia 96 (2): 200–207. doi:10.1007/BF00317733.
  • Musarika, S., C. E. Atherton, T. Gomersall, M. J. Wells, J. Kaduk, A. M. J. Cumming, S. E. Page, W. C. Oechel, and D. Zona. 2017. “Effect of Water Table Management and Elevated CO2 on Radish Productivity and on CH4 and CO2 Fluxes from Peatlands Converted to Agriculture.” Science of the Total Environment 584-585: 665–672. doi:10.1016/j.scitotenv.2017.01.094.
  • Myers-Smith, I. H., A. D. McGuire, J. W. Harden, and F. S. Chapin III. 2007. “Influence of Disturbance on Carbon Exchange in a Permafrost Collapse and Adjacent Burned Forest.” Journal of Geophysical Research Biogeosciences 112: G04017. doi:10.1029/2007JG000423
  • Neubauer, S. C., and J. P. Megonigal. 2015. “Moving beyond Global Warming Potentials to Quantify the Climatic Role of Ecosystems.” Ecosystems 18 (6): 1000–1013. doi:10.1007/s10021-015-9879-4.
  • Nijp, J. J., J. Limpens, K. Metselaar, S. E. A. T. M. van der Zee, F. Berendse, and B. J. M. Robroek. 2014. “Can Frequent Precipitation Moderate the Impact of Drought on Peatmoss Carbon Uptake in Northern Peatlands?” New Phytologist 203 (1): 70–80. doi:10.1111/nph.12792.
  • Nilsson, M., J. Sagerfors, I. Buffam, H. Laudon, T. Eriksson, A. Grelle, L. Klemedtsson, P. Weslien, and A. Lindroth. 2008. “Contemporary Carbon Accumulation in a Boreal Oligotrophic Minerogenic Mire – A Significant Sink after Accounting for All C-fluxes.” Global Change Biology 14 (10): 2317–2332. doi:10.1111/j.1365-2486.2008.01654.x.
  • Norby, R. J., J. Childs, P. J. Hanson, and J. M. Warren. 2019. “Rapid Loss of an Ecosystem Engineer: Sphagnum Decline in an Experimentally Warmed Bog.” Ecology and Evolution 9 (22): 12571–12585. doi:10.1002/ece3.5722.
  • Noyce, G. L., R. K. Varner, J. L. Bubier, and S. Frolking. 2014. “Effect of Carex Rostrata on Seasonal and Interannual Variability in Peatland Methane Emissions.” Journal of Geophysical Research Biogeosciences 119 (1): 24–34. doi:10.1002/2013JG002474.
  • Nugent, K. A., I. B. Strachan, M. Strack, N. T. Roulet, and L. Rochefort. 2018. “Multi-year Net Ecosystem Carbon Balance of a Restored Peatland Reveals a Return to Carbon Sink.” Global Change Biology 24 (12): 5751–5768. doi:10.1111/gcb.14449.
  • Nykanen, H., J. Alm, J. Silvola, K. Tolonen, and P. J. Martikainen. 1998. “Methane Fluxes on Boreal Peatlands of Different Fertility and the Effect of Long-term Experimental Lowering of the Water Table on Flux Rates.” Global Biogeochemical Cycles 12 (1): 53–69. doi:10.1029/97GB02732.
  • Oechel, W. C., G. L. Vourlitis, S. J. Hastings, R. P. Ault Jr., and P. Bryant. 1998. “The Effects of Water Table Manipulation and Elevated Temperature on the Net CO2 Flux of Wet Sedge Tundra Ecosystems.” Global Change Biology 4 (1): 77–90. doi:10.1046/j.1365-2486.1998.00110.x.
  • Ojanen, P., K. Minkkinen, and T. Penttila. 2013. “The Current Greenhouse Gas Impact of Forestry-drained Boreal Peatlands.” Forest Ecology and Management 289: 201–208. doi:10.1016/j.foreco.2012.10.008.
  • Olefeldt, D., E. S. Euskirchen, J. Harden, E. Kane, A. D. McGuire, M. P. Waldrop, and M. R. Turetsky. 2017. “A Decade of Boreal Rich Fen Greenhouse Gas Fluxes in Response to Natural and Experimental Water Table Variability.” Global Change Biology 23 (6): 2428–2440. doi:10.1111/gcb.13612.
  • Page, S., A. Hoscilo, H. Wosten, J. Jauhiainen, M. Silvius, J. Rieley, H. Ritzema, et al. 2009. “Restoration Ecology of Lowland Tropical Peatlands in Southeast Asia: Current Knowledge and Future Research Directions.” Ecosystems 12 (6): 888–905. doi:10.1007/s10021-008-9216-2.
  • Page, S. E., J. O. Rieley, and C. J. Banks. 2011. “Global and Regional Importance of the Tropical Peatland Carbon Pool.” Global Change Biology 17 (2): 798–818. doi:10.1111/j.1365-2486.2010.02279.x.
  • Page, S. E., J. O. Rieley, W. Shotyk, D. Weiss, D. M. Newbery, T. H. Clutton–Brock, and G. T. Prance. 1999. “Interdependence of Peat and Vegetation in a Tropical Peat Swamp Forest. Philosophical Transactions of the Royal Society of London.” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354 (1391): 1885–1897. doi:10.1098/rstb.1999.0529.
  • Pal, J. S., F. Giorgi, and X. Q. Bi. 2004. “Consistency of Recent European Summer Precipitation Trends and Extremes with Future Regional Climate Projections.” Geophysical Research Letters 31 (13): 4. doi:10.1029/2004GL019836.
  • Palta, J. A., and P. S. Nobel. 1989. “Influences of Water Status, Temperature, and Root Age on Daily Patterns of Root Respiration for Two Cactus Species.” Annals of Botany 63 (6): 651–662. doi:10.1093/oxfordjournals.aob.a087794.
  • Pastor, J., J. Solin, S. D. Bridgham, K. Updegraff, C. Harth, P. Weishampel, and B. Dewey. 2003. “Global Warming and the Export of Dissolved Organic Carbon from Boreal Peatlands.” Oikos 100 (2): 380–386. doi:10.1034/j.1600-0706.2003.11774.x.
  • Patterson, L., and D. J. Cooper. 2007. “The Use of Hydrologic and Ecological Indicators for the Restoration of Drainage Ditches and Water Diversions in a Mountain Fen, Cascade Range, California.” Wetlands 27 (2): 290–304. doi:10.1672/0277-5212(2007)27[290:TUOHAE]2.0.CO;2.
  • Peacock, M., T. G. Jones, B. Airey, A. Johncock, C. D. Evans, I. Lebron, N. Fenner, and C. Freeman. 2015. “The Effect of Peatland Drainage and Rewetting (Ditch Blocking) on Extracellular Enzyme Activities and Water Chemistry.” Soil Use and Management 31 (1): 67–76. doi:10.1111/sum.12138.
  • Peacock, M., V. Gauci, A. J. Baird, A. Burden, P. J. Chapman, A. Cumming, J. G. Evans, et al. 2019. “The Full Carbon Balance of a Rewetted Cropland Fen and a Conservation-managed Fen.” Agriculture Ecosystems & Environment 269: 1–12. doi:10.1016/j.agee.2018.09.020.
  • Pearson, M., T. Penttila, L. Harjunpaa, R. Laiho, J. Laine, T. Sarjala, K. Silvan, and N. Silvan. 2015. “Effects of Temperature Rise and Water-table-level Drawdown on Greenhouse Gas Fluxes of Boreal Sedge Fens.” Boreal Environment Research 20: 489–505.
  • Peichl, M., M. Öquist, M. Ottosson Löfvenius, U. Ilstedt, J. Sagerfors, A. Grelle, A. Lindroth, and M. B. Nilsson. 2014. “A 12-year Record Reveals Pre-growing Season Temperature and Water Table Level Threshold Effects on the Net Carbon Dioxide Exchange in A Boreal Fen.” Environmental Research Letters 9 (5): 055006. doi:10.1088/1748-9326/9/5/055006.
  • Pelletier, L., I. B. Strachan, N. T. Roulet, and M. Garneau. 2015. “Can Boreal Peatlands with Pools Be Net Sinks for CO2?” Environmental Research Letters 10 (3): 035002. doi:10.1088/1748-9326/10/3/03500
  • Planas-Clarke, A. M., R. A. Chimner, J. A. Hribljan, E. A. Lilleskov, and B. Fuentealba. 2020. “The Effect of Water Table Levels and Short-term Ditch Restoration on Mountain Peatland Carbon Cycling in the Cordillera Blanca, Peru.” Wetlands Ecology and Management 28 (1): 51–69. doi:10.1007/s11273-019-09694-z.
  • Poorter, H., K. J. Niklas, P. B. Reich, J. Oleksyn, P. Poot, and L. Mommer. 2012. “Biomass Allocation to Leaves, Stems and Roots: Meta-analyses of Interspecific Variation and Environmental Control.” New Phytologist 193 (1): 30–50. doi:10.1111/j.1469-8137.2011.03952.x.
  • Potvin, L. R., E. S. Kane, R. A. Chimner, R. K. Kolka, and E. A. Lilleskov. 2015. “Effects of Water Table Position and Plant Functional Group on Plant Community, Aboveground Production, and Peat Properties in a Peatland Mesocosm Experiment (Peatcosm).” Plant and Soil 387 (1–2): 277–294. doi:10.1007/s11104-014-2301-8.
  • Preston, M. D., M. C. Eimers, and S. A. Watmough. 2011. “Effect of Moisture and Temperature Variation on DOC Release from a Peatland Conflicting Results from Laboratory, Field and Historical Data Analysis.” Science of the Total Environment 409 (7): 1235–1242. doi:10.1016/j.scitotenv.2010.12.027.
  • Price, J. S. 2003. “Role and Character of Seasonal Peat Soil Deformation on the Hydrology of Undisturbed and Cutover Peatlands.” Water Resources Research 39 (9). doi:10.1029/2002WR001302.
  • Price, J. S., and G. S. Whitehead. 2001. “Developing Hydrologic Thresholds for Sphagnum Recolonization on an Abandoned Cutover Bog.” Wetlands 21 (1): 32–40. doi:10.1672/0277-5212(2001)021[0032:DHTFSR]2.0.CO;2.
  • Price, J. S., and S. M. Schlotzhauer. 1999. “Importance of Shrinkage and Compression in Determining Water Storage Changes in Peat the Case of a Mined Peatland.” Hydrological Processes 13 (16): 2591–2601. doi:10.1002/(SICI)1099-1085(199911)13:16<2591::AID-HYP933>3.0.CO;2-E.
  • Raghoebarsing, A. A., A. J. P. Smolders, M. C. Schmid, W. I. C. Rijpstra, M. Wolters-Arts, J. Derksen, M. S. M. Jetten, et al. 2005. “Methanotrophic Symbionts Provide Carbon for Photosynthesis in Peat Bogs.” Nature 436 (7054): 1153–1156. doi:10.1038/nature03802.
  • Ratcliffe, J. L., A. Creevy, R. Andersen, E. Zarov, P. P. J. Gaffney, M. A. Taggart, Y. Mazei, et al. 2017. “Ecological and Environmental Transition across the Forested-to-open Bog Ecotone in a West Siberian Peatland.” Science of the Total Environment 607: 816–828. doi:10.1016/j.scitotenv.2017.06.276.
  • Ratcliffe, J. L., D. I. Campbell, B. R. Clarkson, A. M. Wall, and L. A. Schipper. 2019. “Water Table Fluctuations Control CO2 Exchange in Wet and Dry Bogs through Different Mechanisms.” Science of the Total Environment 655: 1037–1046. doi:10.1016/j.scitotenv.2018.11.151.
  • Ratcliffe, J. L., D. I. Campbell, L. A. Schipper, A. M. Wall, and B. R. Clarkson. 2020. “Recovery of the CO2 Sink in a Remnant Peatland following Water Table Lowering.” Science of the Total Environment 718: 12. doi:10.1016/j.scitotenv.2019.134613.
  • Reczuga, M. K., M. Lamentowicz, M. Mulot, E. A. D. Mitchell, A. Buttler, B. Chojnicki, M. Słowiński, et al. 2018. “Predator-prey Mass Ratio Drives Microbial Activity under Dry Conditions in Sphagnum Peatlands.” Ecology and Evolution 8 (11): 5752–5764. doi:10.1002/ece3.4114.
  • Renou-Wilson, F., C. Barry, C. Muller, and D. Wilson. 2014. “The Impacts of Drainage, Nutrient Status and Management Practice on the Full Carbon Balance of Grasslands on Organic Soils in a Maritime Temperate Zone.” Biogeosciences 11 (16): 4361–4379. doi:10.5194/bg-11-4361-2014.
  • Renou-Wilson, F., G. Moser, D. Fallon, C. A. Farrell, C. Müller, and D. Wilson. 2019. “Rewetting Degraded Peatlands for Climate and Biodiversity Benefits Results from Two Raised Bogs.” Ecological Engineering 127: 547–560. doi:10.1016/j.ecoleng.2018.02.014.
  • Riutta, T., J. Laine, and E. S. Tuittila. 2007. “Sensitivity of CO2 Exchange of Fen Ecosystem Components to Water Level Variation.” Ecosystems 10 (5): 718–733. doi:10.1007/s10021-007-9046-7.
  • Robroek, B. J. M., J. Limpens, A. Breeuwer, and M. G. C. Schouten. 2007b. “Effects of Water Level and Temperature on Performance of Four Sphagnum Mosses.” Plant Ecology 190 (1): 97–107. doi:10.1007/s11258-006-9193-5.
  • Robroek, B. J. M., J. Limpens, A. Breeuwer, P. H. Crushell, and M. G. C. Schouten. 2007a. “Interspecific Competition between Sphagnum Mosses at Different Water Tables.” Functional Ecology 21 (4): 805–812. doi:10.1111/j.1365-2435.2007.01269.x.
  • Robroek, B. J. M., M. G. C. Schouten, J. Limpens, F. Berendse, and H. Poorter. 2009. “Interactive Effects of Water Table and Precipitation on Net CO2 Assimilation of Three Co-occurring Sphagnum Mosses Differing in Distribution above the Water Table.” Global Change Biology 15 (3): 680–691. doi:10.1111/j.1365-2486.2008.01724.x.
  • Robroek, B. J. M., R. J. H. Albrecht, S. Hamard, A. Pulgarin, L. Bragazza, A. Buttler, and V. E. J. Jassey. 2016. “Peatland Vascular Plant Functional Types Affect Dissolved Organic Matter Chemistry.” Plant and Soil 407 (1–2): 135–143. doi:10.1007/s11104-015-2710-3.
  • Robroek, B. J. M., V. E. J. Jassey, M. A. R. Kox, R. L. Berendsen, R. T. E. Mills, L. Cécillon, J. Puissant, M. Meima-Franke, P. A. H. M. Bakker, and P. L. E. Bodelier. 2015. “Peatland Vascular Plant Functional Types Affect Methane Dynamics by Altering Microbial Community Structure.” Journal of Ecology 103 (4): 925–934. doi:10.1111/1365-2745.12413.
  • Rochette, P., R. L. Desjardins, and E. Pattey. 1991. “Spatial and Temporal Variability of Soil Respiration in Agricultural Fields.” Canadian Journal of Soil Science 71 (2): 189–196. doi:10.4141/cjss91-018.
  • Rodriguez, A. F., S. Gerber, and S. H. Daroub. 2020. “Modeling Soil Subsidence in a Subtropical Drained Peatland. The Case of the Everglades Agricultural Area.” Ecological Modelling 415: 10. doi:10.1016/j.ecolmodel.2019.108859.
  • Rosenberry, D. O., P. H. Glaser, D. I. Siegel, and E. P. Weeks. 2003. “Use of Hydraulic Head to Estimate Volumetric Gas Content and Ebullition Flux in Northern Peatlands.” Water Resources Research 39 (3): 10. doi:10.1029/2002WR001377.
  • Rothwell, R. L., U. Silins, and G. R. Hillman. 1996. “The Effects of Drainage on Substrate Water Content at Several Forested Alberta Peatlands.” Canadian Journal of Forest Research 26 (1): 53–62. doi:10.1139/x26-006.
  • Roulet, N. T. 2000. “Peatlands, Carbon Storage, Greenhouse Gases, and the Kyoto Protocol Prospects and Significance for Canada.” Wetlands 20 (4): 605–615. doi:10.1672/0277-5212(2000)020[0605:PCSGGA]2.0.CO;2.
  • Roulet, N. T., P. M. Lafleur, P. J. H. Richard, T. R. Moore, E. R. Humphreys, and J. Bubier. 2007. “Contemporary Carbon Balance and Late Holocene Carbon Accumulation in a Northern Peatland.” Global Change Biology 13 (2): 397–411. doi:10.1111/j.1365-2486.2006.01292.x.
  • Roulet, N. T., and T. R. Moore. 1995. “The Effect of Forestry Drainage Practices on the Emission of Methane from Northern Peatlands.” Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere 25 (3): 491–499. doi:10.1139/x95-055.
  • Rupp, D., E. S. Kane, C. Dieleman, J. K. Keller, and M. Turetsky. 2019. “Plant Functional Group Effects on Peat Carbon Cycling in a Boreal Rich Fen.” Biogeochemistry 144 (3): 305–327. doi:10.1007/s10533-019-00590-5.
  • Rydin, H., J. K. Jeglum, and K. D. Bennett. 2013. The Biology of Peatlands. Second ed. Oxford, UK: Oxford University Press.
  • Saarnio, S., W. Winiwarter, and J. Leitão. 2009. “Methane Release from Wetlands and Watercourses in Europe.” Atmospheric Environment 43 (7): 1421–1429. doi:10.1016/j.atmosenv.2008.04.007.
  • Samson, M., S. Słowińska, M. Słowiński, M. Lamentowicz, J. Barabach, K. Harenda, M. Zielińska, et al. 2018. “The Impact of Experimental Temperature and Water Level Manipulation on Carbon Dioxide Release in a Poor Fen in Northern Poland.” Wetlands 38 (3): 551–563. doi:10.1007/s13157-018-0999-4.
  • Scharlemann, J. P. W., E. V. J. Tanner, R. Hiederer, and V. Kapos. 2014. “Global Soil Carbon Understanding and Managing the Largest Terrestrial Carbon Pool.” Carbon Management 5 (1): 81–91. doi:10.4155/cmt.13.77.
  • Schimelpfenig, D. W., D. J. Cooper, and R. A. Chimner. 2014. “Effectiveness of Ditch Blockage for Restoring Hydrologic and Soil Processes in Mountain Peatlands.” Restoration Ecology 22 (2): 257–265. doi:10.1111/rec.12053.
  • Schipperges, B., and H. Rydin. 1998. “Response of Photosynthesis of Sphagnum Species from Contrasting Microhabitats to Tissue Water Content and Repeated Desiccation.” New Phytologist 140 (4): 677–684. doi:10.1046/j.1469-8137.1998.00311.x.
  • Schmidt, A., K. John, H. Auge, R. Brandl, F. G. Horgan, J. Settele, A. S. Zaitsev, V. Wolters, and M. Schadler. 2016. “Compensatory Mechanisms of Litter Decomposition under Alternating Moisture Regimes in Tropical Rice Fields.” Applied Soil Ecology 107: 79–90. doi:10.1016/j.apsoil.2016.05.014.
  • Schreader, C. P., W. R. Rouse, T. J. Griffis, L. D. Boudreau, and P. D. Blanken. 1998. “Carbon Dioxide Fluxes in a Northern Fen during a Hot, Dry Summer.” Global Biogeochemical Cycles 12 (4): 729–740. doi:10.1029/98GB02738.
  • Schrier-Uijl, A. P., P. S. Kroon, P. A. Leffelaar, J. C. van Huissteden, F. Berendse, and E. M. Veenendaal. 2010. “Methane Emissions in Two Drained Peat Agro-ecosystems with High and Low Agricultural Intensity.” Plant and Soil 329 (1–2): 509–520. doi:10.1007/s11104-009-0180-1.
  • Schulte, M. L., D. L. McLaughlin, F. C. Wurster, K. Balentine, G. K. Speiran, W. M. Aust, R. D. Stewart, J. M. Varner, and C. N. Jones. 2019. “Linking Ecosystem Function and Hydrologic Regime to Inform Restoration of a Forested Peatland.” Journal of Environmental Management 233: 342–351. doi:10.1016/j.jenvman.2018.12.042.
  • Schuur, E. A. G., J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, et al. 2008. “Vulnerability of Permafrost Carbon to Climate Change Implications for the Global Carbon Cycle.” Bioscience 58 (8): 701–714. doi:10.1641/B580807.
  • Screen, J. A. 2013. “Influence of Arctic Sea Ice on European Summer Precipitation.” Environmental Research Letters 8 (4): 9. doi:10.1088/1748-9326/8/4/044015.
  • Shannon, R. D., and J. R. White. 1994. “3-year Study of Controls on Methane Emissions from 2 Michigan Peatlands.” Biogeochemistry 27 (1): 35–60. doi:10.1007/BF00002570.
  • Sillmann, J., V. V. Kharin, F. W. Zwiers, X. Zhang, and D. Bronaugh. 2013. “Climate Extremes Indices in the CMIP5 Multimodel Ensemble Part 2.” Future Climate Projections. Journal of Geophysical Research Atmospheres 118 (6): 2473–2493. doi:10.1002/jgrd.50188.
  • Silvan, N., E.-S. Tuittila, V. Kitunen, H. Vasander, and J. Laine. 2005. “Nitrate Uptake by Eriophorum Vaginatum Controls N2O Production in a Restored Peatland.” Soil Biology and Biochemistry 37 (8): 1519–1526. doi:10.1016/j.soilbio.2005.01.006.
  • Silvola, J., J. Alm, U. Ahlholm, H. Nykanen, and P. J. Martikainen. 1996. “The Contribution of Plant Roots to CO2 Fluxes from Organic Soils.” Biology and Fertility of Soils 23 (2): 126–131. doi:10.1007/BF00336052.
  • Sinsabaugh, R. L. 2010. “Phenol Oxidase, Peroxidase and Organic Matter Dynamics of Soil.” Soil Biology & Biochemistry 42 (3): 391–404. doi:10.1016/j.soilbio.2009.10.014.
  • St. Louis, V. L., C. A. Kelly, E. Duchemin, J. W. M. Rudd, and D. M. Rosenberg. 2000. “Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere A Global Estimate.” Bioscience 50 (9): 766–775. doi:10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2.
  • Strachan, I. B., L. Pelletier, and M.-C. Bonneville. 2015. “Inter-annual Variability in Water Table Depth Controls Net Ecosystem Carbon Dioxide Exchange in a Boreal Bog.” Biogeochemistry 127(1): 99–111. doi10.1007/s10533-015-0170-8
  • Strack, M., Ed. 2008. Peatlands and Climate Change, 223. Finland: International Peat Society.
  • Strack, M., J. Cagampan, G. H. Fard, A. M. Keith, K. Nugent, T. Rankin, C. Robinson, I. B. Strachan, J. M. Waddington, and B. Xu. 2016. “Controls on Plot-scale Growing Season CO2 and CH4 Fluxes in Restored Peatlands Do They Differ from Unrestored and Natural Sites?” Mires and Peat 17: 18.
  • Strack, M., and J. M. Waddington. 2007. “Response of Peatland Carbon Dioxide and Methane Fluxes to a Water Table Drawdown Experiment.” Global Biogeochemical Cycles 21 (1): 13. doi:10.1029/2006GB002715.
  • Strack, M., J. M. Waddington, and E. S. Tuittila. 2004. “Effect of Water Table Drawdown on Northern Peatland Methane Dynamics Implications for Climate Change.” Global Biogeochemical Cycles 18 (4): 7. doi:10.1029/2003GB002209.
  • Strack, M., J. M. Waddington, L. Rochefort, and E. S. Tuittila. 2006a. “Response of Vegetation and Net Ecosystem Carbon Dioxide Exchange at Different Peatland Microforms following Water Table Drawdown.” Journal of Geophysical Research-Biogeosciences 111 (G2): 10a. doi:10.1029/2005JG000145.
  • Strack, M., J. M. Waddington, M. C. Lucchese, and J. P. Cagampan. 2009. “Moisture Controls on CO2 Exchange in a Sphagnum-dominated Peatland: Results from an Extreme Drought Field Experiment.” Ecohydrology 2 (4): 454–461. doi:10.1002/eco.68.
  • Strack, M., J. M. Waddington, R. A. Bourbonniere, E. L. Buckton, K. Shaw, P. Whittington, and J. S. Price. 2008. “Effect of Water Table Drawdown on Peatland Dissolved Organic Carbon Export and Dynamics.” Hydrological Processes 22 (17): 3373–3385. doi:10.1002/hyp.6931.
  • Strack, M., and J. S. Price. 2009. “Moisture Controls on Carbon Dioxide Dynamics of Peat- Sphagnum Monoliths.” Ecohydrology 2 (1): 34–41. doi:10.1002/eco.36.
  • Strack, M., A. M. Keith, and B. Xu. 2014. “Growing Season Carbon Dioxide and Methane Exchange at a Restored Peatland on the Western Boreal Plain.” Ecological Engineering 64: 231–239. https://doi.org/10.1016/j.ecoleng.2013.12.013
  • Strack, M., M. F. Waller, and J. M. Waddington. 2006b. “Sedge Succession and Peatland Methane Dynamics A Potential Feedback to Climate Change.” Ecosystems 9 (2): 278–287. doi:10.1007/s10021-005-0070-1.
  • Strack, M., T. M. Munir, and B. Khadka. 2019. “Shrub Abundance Contributes to Shifts in Dissolved Organic Carbon Concentration and Chemistry in a Continental Bog Exposed to Drainage and Warming.” Ecohydrology 12 (5): 12. doi:10.1002/eco.2100.
  • Strack, M., Y. Zuback, C. McCarter, and J. Price. 2015. “Changes in Dissolved Organic Carbon Quality in Soils and Discharge 10years after Peatland Restoration.” Journal of Hydrology 527: 345–354. doi:10.1016/j.jhydrol.2015.04.061.
  • Strack, M., and Y. C. A. Zuback. 2013. “Annual Carbon Balance of a Peatland 10 Yr following Restoration.” Biogeosciences 10 (5): 2885–2896. doi:10.5194/bg-10-2885-2013.
  • Strakova, P., J. Anttila, P. Spetz, V. Kitunen, T. Tapanila, and R. Laiho. 2010. “Litter Quality and Its Response to Water Level Drawdown in Boreal Peatlands at Plant Species and Community Level.” Plant and Soil 335 (1–2): 501–520. doi:10.1007/s11104-010-0447-6.
  • Strakova, P., T. Penttila, J. Laine, and R. Laiho. 2012. “Disentangling Direct and Indirect Effects of Water Table Drawdown on Above- and Belowground Plant Litter Decomposition Consequences for Accumulation of Organic Matter in Boreal Peatlands.” Global Change Biology 18 (1): 322–335. doi:10.1111/j.1365-2486.2011.02503.x.
  • Strom, L., A. Ekberg, M. Mastepanov, and T. R. Christensen. 2003. “The Effect of Vascular Plants on Carbon Turnover and Methane Emissions from a Tundra Wetland.” Global Change Biology 9 (8): 1185–1192. doi:10.1046/j.1365-2486.2003.00655.x.
  • Strom, L., and T. R. Christensen. 2007. “Below Ground Carbon Turnover and Greenhouse Gas Exchanges in a Sub-arctic Wetland.” Soil Biology and Biochemistry 39 (7): 1689–1698. doi:10.1016/j.soilbio.2007.01.019.
  • Sulman, B. N., A. R. Desai, B. D. Cook, N. Saliendra, and D. S. Mackay. 2009. “Contrasting Carbon Dioxide Fluxes between a Drying Shrub Wetland in Northern Wisconsin, USA, and Nearby Forests.” Biogeosciences 6 (6): 1115–1126. doi:10.5194/bg-6-1115-2009.
  • Sulman, B. N., A. R. Desai, N. M. Schroeder, D. Ricciuto, A. Barr, A. D. Richardson, L. B. Flanagan, et al. 2012. “Impact of Hydrological Variations on Modeling of Peatland CO2 Fluxes: Results from the North American Carbon Program Site Synthesis.” Journal of Geophysical Research-Biogeosciences 117 (G1): 21. doi:10.1029/2011JG001862.
  • Swails, E., D. Hertanti, K. Hergoualc’h, L. Verchot, and D. Lawrence. 2019a. “The Response of Soil Respiration to Climatic Drivers in Undrained Forest and Drained Oil Palm Plantations in an Indonesian Peatland.” Biogeochemistry 142 (1): 37–51. doi:10.1007/s10533-018-0519-x.
  • Swails, E., X. Yang, S. Asefi, K. Hergoualc’h, L. Verchot, R. E. McRoberts, and D. Lawrence. 2019b. “Linking Soil Respiration and Water Table Depth in Tropical Peatlands with Remotely Sensed Changes in Water Storage from the Gravity Recovery And climate Experiment.” Mitigation and Adaptation Strategies for Global Change 24 (4): 575–590. doi:10.1007/s11027-018-9822-z.
  • Swenson, M. M., S. Regan, D. T. H. Bremmers, J. Lawless, M. Saunders, and L. W. Gill. 2019. “Carbon Balance of a Restored and Cutover Raised Bog Implications for Restoration and Comparison to Global Trends.” Biogeosciences 16 (3): 713–731. doi:10.5194/bg-16-713-2019.
  • Taft, H. E., P. A. Cross, and D. L. Jones. 2018. “Efficacy of Mitigation Measures for Reducing Greenhouse Gas Emissions from Intensively Cultivated Peatlands.” Soil Biology and Biochemistry 127: 10–21. doi:10.1016/j.soilbio.2018.08.020.
  • Talbot, J. 2009. “Drainage as a Model for Long Term Climate Change Effect on Vegetation Dynamics and Carbon Cycling in Boreal Peatlands.” [Ph.D. thesis], McGill University.
  • Talbot, J., N. T. Roulet, O. Sonnentag, and T. R. Moore. 2014. “Increases in Aboveground Biomass and Leaf Area 85 Years after Drainage in a Bog.” Botany 92 (10): 713–721. doi:10.1139/cjb-2013-0319.
  • Thompson, D. K., and J. M. Waddington. 2008. “Sphagnum under Pressure: Towards an Ecohydrological Approach to Examining Sphagnum Productivity.” Ecohydrology 1 (4): 299–308. doi:10.1002/eco.31.
  • Thormann, M. N., and S. E. Bayley. 1997. “Aboveground Net Primary Production along a Bog-fen-marsh Gradient in Southern Boreal Alberta, Canada.” Ecoscience 4 (3): 374–384. doi:10.1080/11956860.1997.11682416.
  • Thormann, M. N., S. E. Bayley, and A. R. Szumigalski. 1998. “Effects of Hydrologic Changes on Aboveground Production and Surface Water Chemistry in Two Boreal Peatlands in Alberta Implications for Global Warming.” Hydrobiologia 362 (1–3): 171–183. doi:10.1023/A:1003194803695.
  • Toberman, H., C. D. Evans, C. Freeman, N. Fenner, M. White, B. A. Emmett, and R. R. E. Artz. 2008. “Summer Drought Effects upon Soil and Litter Extracellular Phenol Oxidase Activity and Soluble Carbon Release in an Upland Calluna Heathland.” Soil Biology and Biochemistry 40 (6): 1519–1532. doi:10.1016/j.soilbio.2008.01.004.
  • Toet, S., J. H. C. Cornelissen, R. Aerts, R. S. P. van Logtestijn, M. de Beus, and R. Stoevelaar. 2006. “Moss Responses to Elevated CO2 and Variation in Hydrology in a Temperate Lowland Peatland.” Plant Ecology 182 (1–2): 27–40. doi:10.1007/s11258-005-9029-8.
  • Trap, J., M. Bonkowski, C. Plassard, C. Villenave, and E. Blanchart. 2016. “Ecological Importance of Soil Bacterivores for Ecosystem Functions.” Plant and Soil 398 (1–2): 1–24. doi:10.1007/s11104-015-2671-6.
  • Tuittila, E. S., H. Vasander, and J. Laine. 2000b. “Impact of Rewetting on the Vegetation of a Cut-away Peatland.” Applied Vegetation Science 3 (2): 205–212. doi:10.2307/1478999.
  • Tuittila, E. S., V. M. Komulainen, H. Vasander, and J. Laine. 1999. “Restored Cut-away Peatland as a Sink for Atmospheric CO 2.” Oecologia 120 (4): 563–574. doi:10.1007/s004420050891.
  • Tuittila, E.-S., V.-M. Komulainen, H. Vasander, H. Nykänen, P. J. Martikainen, and J. Laine. 2000a. “Methane Dynamics of a Restored Cut-away Peatland.” Global Change Biology 6 (5): 569–581. doi:10.1046/j.1365-2486.2000.00341.x.
  • Turetsky, M. R. 2003. “The Role of Bryophytes in Carbon and Nitrogen Cycling.” The Bryologist 106(3):395–409. 315. doi:10.1639/05.
  • Turetsky, M. R., B. Bond-Lamberty, E. Euskirchen, J. Talbot, S. Frolking, A. D. McGuire, and E. S. Tuittila. 2012. “The Resilience and Functional Role of Moss in Boreal and Arctic Ecosystems.” New Phytologist 196 (1): 49–67. doi:10.1111/j.1469-8137.2012.04254.x.
  • Turetsky, M. R., C. C. Treat, M. P. Waldrop, J. M. Waddington, J. W. Harden, and A. D. McGuire. 2008. “Short-term Response of Methane Fluxes and Methanogen Activity to Water Table and Soil Warming Manipulations in an Alaskan Peatland.” Journal of Geophysical Research-Biogeosciences 113: 15. doi:10.1029/2007JG000496.
  • Turetsky, M. R., R. K. Wieder, and D. H. Vitt. 2002. “Boreal Peatland C Fluxes under Varying Permafrost Regimes.” Soil Biology and Biochemistry 34 (7): 907–912. doi:10.1016/S0038-0717(02)00022-6.
  • Turetsky, M. R., R. K. Wieder, D. H. Vitt, R. J. Evans, and K. D. Scott. 2007. “The Disappearance of Relict Permafrost in Boreal North America: Effects on Peatland Carbon Storage and Fluxes.” Global Change Biology 13 (9): 1922–1934. doi:10.1111/j.1365-2486.2007.01381.x.
  • Turetsky, M. R., W. F. Donahue, and B. W. Benscoter. 2011. “Experimental Drying Intensifies Burning and Carbon Losses in a Northern Peatland.” Nature Communications 2 (1): 514. doi:10.1038/ncomms1523.
  • Turner, E. K., F. Worrall, and T. P. Burt. 2013. “The Effect of Drain Blocking on the Dissolved Organic Carbon (DOC) Budget of an Upland Peat Catchment in the UK.” Journal of Hydrology 479: 169–179. doi:10.1016/j.jhydrol.2012.11.059.
  • Turunen, J. 2008. “Development of Finnish Peatland Area and Carbon Storage 1950-2000.” Boreal Environment Research 13: 319–334.
  • Turunen, J., E. Tomppo, K. Tolonen, and A. Reinikainen. 2002. “Estimating Carbon Accumulation Rates of Undrained Mires in Finland - Application to Boreal and Subarctic Regions.” The Holocene 12 (1): 69–80. doi:10.1191/0959683602hl522rp.
  • Updegraff, K., S. D. Bridgham, J. Pastor, P. Weishampel, and C. Harth. 2001. “Response of CO2 and CH4 Emissions from Peatlands to Warming and Water Table Manipulation.” Ecological Applications 11: 311–326.
  • Urbanová, Z., T. Picek, and J. Bárta. 2011. “Effect of Peat Re-wetting on Carbon and Nutrient Fluxes, Greenhouse Gas Production and Diversity of Methanogenic Archaeal Community.” Ecological Engineering 37 (7): 1017–1026. doi:10.1016/j.ecoleng.2010.07.012.
  • Urbanová, Z., T. Picek, T. Hajek, I. Bufkova, and E. S. Tuittila. 2012. “Vegetation and Carbon Gas Dynamics under a Changed Hydrological Regime in Central European Peatlands.” Plant Ecology & Diversity 5 (1): 89–103. doi:10.1080/17550874.2012.688069.
  • van den Berg, M., J. Ingwersen, M. Lamers, and T. Streck. 2016. “The Role of Phragmites in the CH4 and CO2 Fluxes in a Minerotrophic Peatland in Southwest Germany.” Biogeosciences 13 (21): 6107–6119. doi:10.5194/bg-13-6107-2016.
  • Vanselow-Algan, M., S. R. Schmidt, M. Greven, C. Fiencke, L. Kutzbach, and E. M. Pfeiffer. 2015. “High Methane Emissions Dominated Annual Greenhouse Gas Balances 30 Years after Bog Rewetting.” Biogeosciences 12 (14): 4361–4371. doi:10.5194/bg-12-4361-2015.
  • Verville, J. H., S. E. Hobbie, F. S. Chapin, and D. U. Hooper. 1998. “Response of Tundra CH4 and CO2 Flux to Manipulation of Temperature and Vegetation.” Biogeochemistry 41 (3): 215–235. doi:10.1023/A:1005984701775.
  • Waddington, J. M., E. Kellner, M. Strack, and J. S. Price. 2010a. “Differential Peat Deformation, Compressibility, and Water Storage between Peatland Microforms Implications for Ecosystem Function and Development.” Water Resources Research 46 (7). doi:10.1029/2009WR008802.
  • Waddington, J. M., M. Strack, and M. J. Greenwood. 2010b. “Toward Restoring the Net Carbon Sink Function of Degraded Peatlands: Short-term Response in CO2 Exchange to Ecosystem-scale Restoration.” Journal of Geophysical Research-Biogeosciences 115 (G1): 13. doi:10.1029/2009JG001090.
  • Waddington, J. M., N. T. Roulet, and R. V. Swanson. 1996. “Water Table Control of CH4 Emission Enhancement by Vascular Plants in Boreal Peatlands.” Journal of Geophysical Research Atmospheres 101 (D17): 22775–22785. doi:10.1029/96JD02014.
  • Waddington, J. M., and S. M. Day. 2007. “Methane Emissions from a Peatland following Restoration.” Journal of Geophysical Research Biogeosciences 112: G03018. doi:10.1029/2007JG000400
  • Walker, T. N., M. H. Garnett, S. E. Ward, S. Oakley, R. D. Bardgett, and N. J. Ostle. 2016. “Vascular Plants Promote Ancient Peatland Carbon Loss with Climate Warming.” Global Change Biology 22 (5): 1880–1889. doi:10.1111/gcb.13213.
  • Wallén, B. 1986. “Above and below Ground Dry Mass of the Three Main Vascular Plants on Hummocks on a Subarctic Peat Bog.” Oikos 46 (1): 51–56. doi:10.2307/3565379.
  • Wang, H., L. Yu, L. Chen, C. Wang, and J. He. 2014b. “Responses of Soil Respiration to Reduced Water Table and Nitrogen Addition in an Alpine Wetland on the Qinghai-Xizang Plateau.” Chinese Journal of Plant Ecology 38 (6): 619–625. doi:10.3724/SP.J.1258.2014.00057
  • Wang, H. J., C. J. Richardson, and M. C. Ho. 2015. “Dual Controls on Carbon Loss during Drought in peatlands.” Nature Climate Change 5 (6): 584–587. doi:10.1038/nclimate2643.
  • Wang, X., G. Huang, and J. Liu. 2014a. “Projected Increases in Intensity and Frequency of Rainfall Extremes through a Regional Climate Modeling Approach.” Journal of Geophysical Research Atmospheres 119 (13): 271–213,286. doi:10.1002/2014JD022564
  • Ward, S. E., K. H. Orwin, N. J. Ostle, M. J. I. Briones, B. C. Thomson, R. I. Griffiths, S. Oakley, H. Quirk, and R. D. Bardgett. 2015. “Vegetation Exerts a Greater Control on Litter Decomposition than Climate Warming in Peatlands.” Ecology 96 (1): 113–123. doi:10.1890/14-0292.1.
  • Ward, S. E., N. J. Ostle, S. Oakley, H. Quirk, P. A. Henrys, R. D. Bardgett, and W. van der Putten. 2013. “Warming Effects on Greenhouse Gas Fluxes in Peatlands are Modulated by Vegetation Composition.” Ecology Letters 16 (10): 1285–1293. doi:10.1111/ele.12167.
  • Ward, S. E., R. D. Bardgett, N. P. McNamara, and N. J. Ostle. 2009. “Plant Functional Group Identity Influences Short-term Peatland Ecosystem Carbon Flux: Evidence from a Plant Removal Experiment.” Functional Ecology 23 (2): 454–462. doi:10.1111/j.1365-2435.2008.01521.x.
  • Weiss, R., J. Alm, R. Laiho, and J. Laine. 1998. “Modeling Moisture Retention in Peat Soils.” Soil Science Society of America Journal 62 (2): 305–313. doi:10.2136/sssaj1998.03615995006200020002x.
  • Weltzin, J. F., C. Harth, S. D. Bridgham, J. Pastor, and M. Vonderharr. 2001. “Production and Microtopography of Bog Bryophytes: Response to Warming and Water-table Manipulations.” Oecologia 128 (4): 557–565. doi:10.1007/s004420100691.
  • Weltzin, J. F., J. Pastor, C. Harth, S. D. Bridgham, K. Updegraff, and C. T. Chapin. 2000. “Response of Bog and Fen Plant Communities to Warming and Water-table Manipulations.” Ecology 81 (12): 3464–3478. doi:10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2.
  • Weltzin, J. F., S. D. Bridgham, J. Pastor, J. Q. Chen, and C. Harth. 2003. “Potential Effects of Warming and Drying on Peatland Plant Community Composition.” Global Change Biology 9 (2): 141–151. doi:10.1046/j.1365-2486.2003.00571.x.
  • Werth, M., and Y. Kuzyakov. 2008. “Root-derived Carbon in Soil Respiration and Microbial Biomass Determined by 14C and 13C.” Soil Biology and Biochemistry 40 (3): 625–637. doi:10.1016/j.soilbio.2007.09.022.
  • Whalen, S. C. 2005. “Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere.” Environmental Engineering Science 22 (1): 73–94. doi:10.1089/ees.2005.22.73.
  • Whalen, S. C., W. S. Reeburgh, and K. A. Sandbeck. 1990. “Rapid Methane Oxidation in a Landfill Cover Soil.” Applied and Environmental Microbiology 56 (11): 3405–3411. doi:10.1128/AEM.56.11.3405-3411.1990.
  • White, J. R., R. D. Shannon, J. F. Weltzin, J. Pastor, and S. D. Bridgham. 2008. “Effects of Soil Warming and Drying on Methane Cycling in a Northern Peatland Mesocosm Study.” Journal of Geophysical Research-Biogeosciences 113: 18. doi:10.1029/2007JG000609.
  • Whiting, G. J., and J. P. Chanton. 1992. “Plant-dependent CH4 Emission in a Subarctic Canadian Fen.” Global Biogeochemical Cycles 6 (3): 225–231. doi:10.1029/92GB00710.
  • Whiting, G. J., and J. P. Chanton. 1996. “Control of the Diurnal Pattern of Methane Emission from Emergent Aquatic Macrophytes by Gas Transport Mechanisms.” Aquatic Botany 54 (2–3): 237–253. doi:10.1016/0304-3770(96)01048-0.
  • Whittington, P. N., and J. S. Price. 2006. “The Effects of Water Table Draw-down (As a Surrogate for Climate Change) on the Hydrology of a Fen Peatland, Canada.” Hydrological Processes 20 (17): 3589–3600. doi:10.1002/hyp.6376.
  • Wickland, K. P., J. C. Neff, and G. R. Aiken. 2007. “Dissolved Organic Carbon in Alaskan Boreal Forest: Sources, Chemical Characteristics, and Biodegradability.” Ecosystems 10 (8): 1323–1340. doi:10.1007/s10021-007-9101-4.
  • Williams, R. T., and R. L. Crawford. 1983. “Microbial Diversity of Minnesota Peatlands.” Microbial Ecology 9 (3): 201–214. doi:10.1007/BF02097737.
  • Wilson, D., C. A. Farrell, D. Fallon, G. Moser, C. Muller, and F. Renou-Wilson. 2016. “Multiyear Greenhouse Gas Balances at a Rewetted Temperate Peatland.” Global Change Biology 22 (12): 4080–4095. doi:10.1111/gcb.13325.
  • Wilson, D., J. Alm, J. Laine, K. A. Byrne, E. P. Farrell, and E.-S. Tuittila. 2009. “Rewetting of Cutaway Peatlands are We Re-Creating Hot Spots of Methane Emissions?” Restoration Ecology 17 (6): 796–806. doi:10.1111/j.1526-100X.2008.00416.x.
  • Wilson, L., J. Wilson, J. Holden, I. Johnstone, A. Armstrong, and M. Morris. 2011. “Ditch Blocking, Water Chemistry and Organic Carbon Flux Evidence that Blanket Bog Restoration Reduces Erosion and Fluvial Carbon Loss.” Science of the Total Environment 409 (11): 2010–2018. doi:10.1016/j.scitotenv.2011.02.036.
  • Wilson, R. M., L. Fitzhugh, G. J. Whiting, S. Frolking, M. D. Harrison, N. Dimova, W. C. Burnett, and J. P. Chanton. 2017. “Greenhouse Gas Balance over Thaw-freeze Cycles in Discontinuous Zone Permafrost.” Journal of Geophysical Research Biogeosciences 122 (2): 387–404. doi:10.1002/2016JG003600.
  • WindMulder, H. L., L. Rochefort, and D. H. Vitt. 1996. “Water and Peat Chemistry Comparisons of Natural and Post-harvested Peatlands across Canada and Their Relevance to Peatland Restoration.” Ecological Engineering 7 (3): 161–181. doi:10.1016/0925-8574(96)00004-3.
  • Wit, F., D. Muller, A. Baum, T. Warneke, W. S. Pranowo, M. Müller, and T. Rixen. 2015. “The Impact of Disturbed Peatlands on River Outgassing in Southeast Asia.” Nature Communications 6 (1): 10155. doi:10.1038/ncomms10155.
  • Worrall, F., M. J. Bell, and A. Bhogal. 2010. “Assessing the Probability of Carbon and Greenhouse Gas Benefit from the Management of Peat Soils.” Science of the Total Environment 408 (13): 2657–2666. doi:10.1016/j.scitotenv.2010.01.033.
  • Wu, H. D., L. Yan, Y. Li, K. R. Zhang, Y. B. Hao, J. Z. Wang, X. D. Zhang, Z. Q. Yan, Y. Zhang, and X. M. Kang. 2020. “Drought-induced Reduction in Methane Fluxes and Its Hydrothermal Sensitivity in Alpine Peatland.” PeerJ 8: 19. doi:10.7717/peerj.8874.
  • Wu, J., N. T. Roulet, M. Nilsson, P. Lafleur, and E. Humphreys. 2012. “Simulating the Carbon Cycling of Northern Peatlands Using a Land Surface Scheme Coupled to a Wetland Carbon Model (CLASS3W-MWM).” Atmosphere-Ocean 50 (4): 487–506. doi:10.1080/07055900.2012.730980.
  • Wu, J. H., and N. T. Roulet. 2014. “Climate Change Reduces the Capacity of Northern Peatlands to Absorb the Atmospheric Carbon Dioxide: The Different Responses of Bogs and Fens.” Global Biogeochemical Cycles 28 (10): 1005–1024. doi:10.1002/2014GB004845.
  • Wu, X. W., R. Cao, X. Wei, X. Q. Xi, P. L. Shi, N. Eisenhauer, S. C. Sun, and P. Kardol. 2017. “Soil Drainage Facilitates Earthworm Invasion and Subsequent Carbon Loss from Peatland Soil.” Journal of Applied Ecology 54 (5): 1291–1300. doi:10.1111/1365-2664.12894.
  • Yang, G., J. Q. Tian, H. Chen, L. Jiang, W. Zhan, J. Hu, E. X. Zhu, et al. 2019. “Peatland Degradation Reduces Methanogens and Methane Emissions from Surface to Deep Soils.” Ecological Indicators 106: 7. doi:10.1016/j.ecolind.2019.105488.
  • Ye, R., Q. Jin, B. Bohannan, J. K. Keller, S. A. McAllister, and S. D. Bridgham. 2012. “pH Controls over Anaerobic Carbon Mineralization, the Efficiency of Methane Production, and Methanogenic Pathways in Peatlands across an Ombrotrophic–minerotrophic Gradient.” Soil Biology and Biochemistry 54: 36–47. doi:10.1016/j.soilbio.2012.05.015.
  • Yrjala, K., T. Tuomivirta, H. Juottonen, A. Putkinen, K. Lappi, E. S. Tuittila, T. Penttila, et al. 2011. “CH4 Production and Oxidation Processes in a Boreal Fen Ecosystem after Long-term Water Table Drawdown.” Global Change Biology 17 (3): 1311–1320. doi:10.1111/j.1365-2486.2010.02290.x.
  • Yu, Z. C. 2012. “Northern Peatland Carbon Stocks and Dynamics a Review.” Biogeosciences 9 (10): 4071–4085. doi:10.5194/bg-9-4071-2012.
  • Yu, Z. C., D. W. Beilman, S. Frolking, G. M. MacDonald, N. T. Roulet, P. Camill, and D. J. Charman. 2011. “Peatlands and Their Role in the Global Carbon Cycle.” Eos, Transactions American Geophysical Union 92 (12): 97–98. doi:10.1029/2011EO120001.
  • Yu, Z. C., J. Loisel, D. P. Brosseau, D. W. Beilman, and S. J. Hunt. 2010. “Global Peatland Dynamics since the Last Glacial Maximum.” Geophysical Research Letters 37 (13): 5. doi:10.1029/2010GL043584.
  • Yupi, H. M., T. Inoue, J. Bathgate, and R. Putra. 2016. “Concentrations, Loads and Yields of Organic Carbon from Two Tropical Peat Swamp Forest Streams in Riau Province, Sumatra, Indonesia.” Mires and Peat 18: 15.
  • Yurova, A., A. Wolf, J. Sagerfors, and M. Nilsson. 2007. “Variations in Net Ecosystem Exchange of Carbon Dioxide in a Boreal Mire Modeling Mechanisms Linked to Water Table Position.” Journal of Geophysical Research Biogeosciences 112: G02025. doi:10.1029/2006JG000342
  • Yuste, J. C., J. Peñuelas, M. Estiarte, J. Garcia-Mas, S. Mattana, R. Ogaya, M. Pujol, and J. Sardans. 2011. “Drought-resistant Fungi Control Soil Organic Matter Decomposition and Its Response to Temperature.” Global Change Biology 17 (3): 1475–1486. doi:10.1111/j.1365-2486.2010.02300.x.
  • Yvon-Durocher, G., A. P. Allen, D. Bastviken, R. Conrad, C. Gudasz, A. St-Pierre, N. Thanh-Duc, and P. A. Del Giorgio. 2014. “Methane Fluxes Show Consistent Temperature Dependence across Microbial to Ecosystem Scales.” Nature 507 (7493): 488–491. doi:10.1038/nature13164.
  • Zak, D., and J. Gelbrecht. 2007. “The Mobilisation of Phosphorus, Organic Carbon and Ammonium in the Initial Stage of Fen Rewetting (A Case Study from NE Germany).” Biogeochemistry 85 (2): 141–151. doi:10.1007/s10533-007-9122-2.
  • Zhang, H., Z. S. Yao, L. Ma, X. H. Zheng, R. Wang, K. Wang, C. Y. Liu, et al. 2019. “Annual Methane Emissions from Degraded Alpine Wetlands in the Eastern Tibetan Plateau.” Science of the Total Environment 657: 1323–1333. doi:10.1016/j.scitotenv.2018.11.443.