3,110
Views
27
CrossRef citations to date
0
Altmetric
Research Articles

Exploiting big earth data from space – first experiences with the timescan processing chain

, , ORCID Icon, , , , , , , & ORCID Icon show all
Pages 36-55 | Received 19 Jan 2018, Accepted 25 Jan 2018, Published online: 23 Feb 2018

References

  • Amazon Web Services. (2017). Sentinel-2 on amazon web services . Retrieved from July 7, 2017 http://sentinel-pds.s3-website.eu-central-1.amazonaws.com/
  • Baumann, P. , Mazzetti, P. , Ungar, J. , Barbera, R. , Barboni, D. , Beccati, A. , ... Campalani, P. (2016). Big data analytics for earth sciences: The earthserver approach. International Journal of Digital Earth , 9 (1), 3–29.
  • Blondeau-Patissier, D. , Gower, J. F. , Dekker, A. G. , Phinn, S. R. , & Brando, V. E. (2014). A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Progress in Oceanography , 123 , 123–144.
  • Cao, J. , Strohmeier, R. , Mjwara, P. , & Sullivan, K. (2016). Geo strategic plan 2016–2025: Implementing geoss . Geneva: GEO. Retrieved from http://www.earthobservations.org/documents/GEO\_Strategic\_Plan\_2016\_2025\_Implementing\_GEOSS.pdf
  • Congalton, R. G. , Gu, J. , Yadav, K. , Thenkabail, P. , & Ozdogan, M. (2014). Global land cover mapping: A review and uncertainty analysis. Remote Sensing , 6 (12), 12070–12093.
  • Eamus, D. , Huete, A. , & Yu, Q. (2016). Vegetation dynamics . Cambridge: Cambridge University Press.
  • Esch, T. , Heldens, W. , Hirne, A. , Keil, M. , Marconcini, M. , Roth, A. , ... Strano, E. (2017). Breaking new ground in mapping human settlements from space-the global urban footprint . arXiv preprint arXiv:1706.04862
  • Esch, T. , Marconcini, M. , Felbier, A. , Roth, A. , Heldens, W. , Huber, M. , ... Dech, S. (2013). Urban footprint processor---Fully automated processing chain generating settlement masks from global data of the tandem-x mission. IEEE Geoscience and Remote Sensing Letters , 10 (6), 1617–1621.
  • Esch, T. , Üreyen, S. , Asamer, H. , Hirner, A. , Marconcini, M. , Metz, A. , ..., Kuchar, S. (2017). Earth observation-supported service platform for the development and provision of thematic information on the built environment. Urban Remote Sensing Event (jurse), 2017 Joint . (pp. 1–4)
  • European Commission. (2013). Commission staff working document - impact assessment. accompanying the document: Proposal for a regulation of the european parliament and of the council establishing the copernicus programme and repealing regulation (eu) no 911/2010 . Brussels, Belgium. Retrived from July 01, 2017 http://www.copernicus.eu/library/detail/248
  • European Space Agency. (2013). Sentinel-1 user handbook . Retrieved from July 01, 2017 https://sentinel.esa.int/documents/247904/685163/Sentinel-1\_User\_Handbook.pdf
  • European Space Agency. (2017a). Asar wide swath mode (envisat.asa.ws\_\_0P) . Retrieved from July 01, 2017 https://earth.esa.int/web/guest/-/asar-wide-swath-mode-1532
  • European Space Agency . (2017b). Copernicus open access hub . Retrieved from July 01, 2017 https://scihub.copernicus.eu/
  • European Space Agency . (2017c). The copernicus space component: Sentinels data product list . Retrieved from July 01, 2017 https://sentinel.esa.int/documents/247904/685154/Sentinel+Products+List-Issue1-Rev1.pdf
  • European Space Agency . (2017d). Esa sentinel toolbox – Snap, version 5.0. . Retrieved July 01, 2017 from http://step.esa.int/main/toolboxes/snap
  • European Space Agency . (2017e). Grid processing on demand platform (g-pod) . Retrieved July 01, 2017 from https://gpod.eo.esa.int/
  • European Space Agency . (2017f). Sentinel-2 msi l1c . Retrieved July 01, 2017 from https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c
  • European Space Agency . (2017g). Sentinel hub, ogc web services . Retrieved July 01, 2017 from http://www.sentinel-hub.com/apps/wms
  • European Space Agency . (2017h). Thematic exploitation platform . Retrieved July 01, 2017 https://tep.eo.esa.int/
  • Fomferra, N. , Böttcher, M. , Zühlke, M. , Brockmann, C. , & Kwiatkowska, E. (2012, July). Calvalus: Full-mission eo cal/val, processing and exploitation services. 2012 IEEE International Geoscience and Remote Sensing Symposium , 5278–5281.
  • Fritz, S. & See, L. (2008). Identifying and quantifying uncertainty and spatial disagreement in the comparison of global land cover for different applications. Global Change Biology , 14 (5), 1057–1075.
  • Gorelick, N. , Hancher, M. , Dixon, M. , Ilyushchenko, S. , Thau, D. , & Moore, R. (2017). in press . Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment.
  • Hadoop. (2016). Apache hadoop, version 2.7.3, apache foundation . Retrieved July 01, 2017 from http://hadoop.apache.org
  • Hansen, M. C. , Potapov, P. V. , Moore, R. , Hancher, M. , Turubanova, S. , & Tyukavina, A. (2013). High-resolution global maps of 21st-century forest cover change. science , 342 (6160), 850–853.
  • Hoff, R. M. & Christopher, S. A. (2009). Remote sensing of particulate pollution from space: have we reached the promised land? Journal of the Air & Waste Management Association , 59 (6), 645–675.
  • Hykes, S. (2013). Lightning talk -- The future of linux containers . Retrieved July 01, 2017 from http://pyvideo.org/pycon-us-2013/the-future-of-linux-containers.html
  • Jung, M. , Henkel, K. , Herold, M. , & Churkina, G. (2006). Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment , 101 (4), 534–553.
  • Krauß, T. (2014). Six years operational processing of satellite data using catena at dlr: Experiences and recommendations. Kartographische Nachrichten , 64 (2), 74–80.
  • Lu, D. , Mausel, P. , Brondizio, E. , & Moran, E. (2004). Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management , 198 (1--3), 149–167.
  • Mack, B. , Leinenkugel, P. , Kuenzer, C. , & Dech, S. (2017). A semi-automated approach for the generation of a new land use and land cover product for germany based on landsat time-series and lucas in-situ data. Remote Sensing Letters , 8 (3), 244–253.
  • Marconcini, M. , Üreyen, S. , Esch, T. , & Metz, A. (2017). Mapping urban areas globally by jointly exploiting optical and radar imagery – The guf+2015 layer . Retrieved July 01, 2017 http://worldcover2017.esa.int/files/2.2-p2.pdffrom
  • Marconcini, M. , Üreyen, S. , Esch, T. , Metz, A. , & Zeidler, J. (2017). Towards a new baseline layer for global land-cover classification derived from multitemporal satellite optical imagery . Retrieved July 01, 2017 from http://worldcover2017.esa.int/files/3.2-p4.pdf
  • Martin, R. V. (2008). Satellite remote sensing of surface air quality. Atmospheric Environment , 42 (34), 7823–7843.
  • McIlroy, M. D. , Pinson, E. N. , & Tague, B. A. (1978). Unix time-sharing system: Foreword. Bell System Technical Journal , 57 , 1899.
  • National Aeronautics and Space Administration. (2017). Aster global digital elevation map . Retrieved July 01, 2017 from https://asterweb.jpl.nasa.gov/gdem.asp
  • Pekel, J.-F. , Cottam, A. , Gorelick, N. , & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature , 540 (7633), 418–422.
  • Potere, D. , Schneider, A. , Angel, S. , & Civco, D. L. (2009). Mapping urban areas on a global scale: Which of the eight maps now available is more accurate? International Journal of Remote Sensing , 30 (24), 6531–6558.
  • Rogge, D. , Bauer, A. , Zeidler, J. , Mueller, A. , Esch, T. , & Heiden, U. (2018). Building an exposed soil composite processor (scmap) for mapping spatial and temporal characteristics of soils with landsat imagery (1984--2014). Remote Sensing of Environment , 205 (Supplement C), 1–17.
  • Rosengren, M. (2014). Sentinel collaborative ground segment sweden. user needs coverage, products and services final report . Stockholm: Metria AB.
  • Rouse, J. W. , Hass, R. H. , & Schell, J. (1973). Third Earth Resources Technology Satellite (ERTS) symposium. Monitoring vegetation systems in the great plains with ERTS . (Vol. 1, pp. 309–317).
  • Roy, D. P. , Ju, J. , Kline, K. , Scaramuzza, P. L. , Kovalskyy, V. , & Hansen, M. (2010). Web-enabled landsat data (weld): Landsat etm+ composited mosaics of the conterminous united states. Remote Sensing of Environment , 114 (1), 35–49.
  • Trianni, G. , Angiuli, E. , Lisini, G. , & Gamba, P. (2014). Human settlements from landsat data using google earth engine. 2014 IEEE Geoscience and Remote Sensing Symposium , 1473–1476.
  • Tum, M. , Zeidler, J. , Günther, K. P. , & Esch, T. (2016). Global npp and straw bioenergy trends for 2000–2014. Biomass and Bioenergy , 90 , 230–236.
  • United States Geological Survey . (2017a). Landsat missions . Retrieved July 01, 2017 from http://landsat.usgs.gov/howisradiancecalculated.php
  • United States Geological Survey . (2017b). Shuttle radar topography mission (srtm) 1 arc-second global . Retrieved July 01, 2017 https://lta.cr.usgs.gov/SRTM1Arc
  • Wagner, W. (2015). Big data infrastructures for processing sentinel data. In D. Fritsch (Ed.), Photogrammetric week ’15 (pp. 93–104). Berlin: VDE Verlag.
  • White, J. , Wulder, M. , Hobart, G. , Luther, J. , Hermosilla, T. , & Griffiths, P. (2014). Pixel-based image compositing for large-area dense time series applications and science. Canadian Journal of Remote Sensing , 40 (3), 192–212.
  • Woodcock, C. E. , Allen, R. , Anderson, M. , Belward, A. , Bindschadler, R. , Cohen, W. , ... Nemani, R. (2008). Free access to landsat imagery. Science , 320 (5879), 1011–1011.
  • Wulder, M. A. , & Coops, N. C. (2014). Make earth observations open access. Nature , 513 (7516), 30.
  • Xie, Y. , Sha, Z. , & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology , 1 (1), 9–23.
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing , 27 (14), 3025–3033.
  • Zha, Y. , Gao, J. , & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing , 24 (3), 583–594.
  • Zhou, Y. , Yang, G. , Wang, S. , Wang, L. , Wang, F. , & Liu, X. (2014). A new index for mapping built-up and bare land areas from Landsat-8 OLI data. Remote Sensing Letters , 5 (10), 862–871.
  • Zhu, Z. , & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in landsat imagery. Remote Sensing of Environment , 118 , 83–94.