3,523
Views
11
CrossRef citations to date
0
Altmetric
Review Article

Linking observation, modelling and satellite-based estimation of global land evapotranspiration

, , , , &
Pages 94-127 | Received 09 Jan 2020, Accepted 09 Mar 2020, Published online: 27 Apr 2020

References

  • Allen, R. G. (1997). Self-calibrating method for estimating solar radiation from air temperature. Journal of Hydrological Engineer -ASCE, 2(2), 56–67.
  • Allen, R. G., Pereira, L. S., Howell, T. A., & Jensen, M. E. (2011). Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management, 98(6), 899–920.
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. Food and Agric. Organ. of the United Nations, Rome. 300 (9), D05109.
  • Alton, P., Fisher, R., Los, S., & Williams, M. (2009). Simulations of global evapotranspiration using semiempirical and mechanistic schemes of plant hydrology. Global Biogeochemical Cycles, 23(4). doi:10.1029/2009GB003540
  • Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G., & Tuttle, S. E. (2019). Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proceedings of the National Academy of Sciences, 116(28), 14071–14076.
  • Anderson, M. C., Norman, J. M., Diak, G. R., Kustas, W. P., & Mecikalski, J. R. (1997). A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sensing of Environment, 60(2), 195–216.
  • Anderson, M. C., Norman, J. M., Kustas, W. P., Houborg, R., Starks, P., & Agam, N. (2008). A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment, 112(12), 4227–4241.
  • Badgley, G., Fisher, J. B., Jiménez, C., Tu, K. P., & Vinukollu, R. K. (2015). On uncertainty in global evapotranspiration estimates from choice of input forcing datasets. Journal of Hydrometeorology, 16(4), 1449–1455.
  • Bai, Y., Zhang, J., Zhang, S., Koju, U. A., Yao, F., & Igbawua, T. (2017). Using precipitation, vertical root distribution and satellite‐retrieved vegetation information to parameterize water stress in a Penman‐Monteith approach to evapotranspiration modeling under Mediterranean climate. Journal of Advances in Modeling Earth Systems, 9(1), 168–192.
  • Bai, Y., Zhang, J., Zhang, S., Yao, F., & Magliulo, V. (2018). A remote sensing-based two-leaf canopy conductance model: Global optimization and applications in modeling gross primary productivity and evapotranspiration of crops. Remote Sensing of Environment, 215, 411–437.
  • Ball, J.T., Woodrow, I., & Berry, J. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In J. Biggins (Ed.), Progress in photosynthesis research (pp. 221–224). Netherlands: Springer.
  • Bastiaanssen, W. G. M., Menentia, M., Feddesb, R. A., & Holtslagc, A. A. M. (1998a). A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation. Journal of Hydrology, 212–213(1–4), 198–212.
  • Bastiaanssen, W. G. M., Pelgrum, H., Wang, J. S., Ma, Y. M., Moreno, J. F., Roerink, G. J., & van der Wal, T. (1998b). A remote sensing Surface Energy Balance Algorithm for Land (SEBAL) −2. Validation. Journal of Hydrology, 212–213(1–4), 213–229.
  • Center, Oak. (2013). Ridge national laboratory distributed active archive. FLUXNET Maps & Graphics Web Page. Retrieved from http://www.fluxnet.ornl.gov/maps-graphics
  • Chen, F. (2005). Variability in global land surface energy budgets during 1987–1988 simulated by an off-line land surface model. Climate Dynamics, 24(7–8), 667–684.
  • Chen, Y., Xia, J., Liang, S., Feng, J., Fisher, J. B., Li, X., … Yuan, W. (2014). Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sensing of Environment, 140, 279–293.
  • Cleugh, H. A., Leuning, R., Mu, Q., & Running, S. W. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sensing of Environment, 106(3), 285–304.
  • Colaizzi, P. D., Kustas, W. P., Anderson, M. C., Agam, N., Tolk, J. A., Evett, S. R., … O’Shaughnessy, S. A. (2012). Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Advances in Water Resources, 50, 134–151.
  • Eichinger, W. E., Parlange, M. B., & Stricker, H. (1996). On the concept of equilibrium evaporation and the value of the Priestley-Taylor coefficient. Water Resources Research, 32(1), 161–164.
  • Eleanor, B., & John, H. R. (2011). Methods to separate observed global evapotranspiration into the interception, transpiration and soil surface evaporation components. Hydrological Processes, 26, 4063–4068.
  • Elhag, M., Psilovikos, A., Manakos, I., & Perakis, K. (2011). Application of the Sebs water balance model in estimating daily evapotranspiration and evaporative fraction from remote sensing data over the Nile Delta. Water Resources Management, 25(11), 2731–2742.
  • Ershadi, A., McCabe, M. F., Evans, J. P., Chaney, N. W., & Wood, E. F. (2014). Multi-site evaluation of terrestrial evaporation models using FLUXNET data. Agricultural and Forest Meteorology, 187, 46–61.
  • Fang, H., Wei, S., & Liang, S. (2012). Validation of MODIS and CYCLOPES LAI products using global field measurement data. Remote Sensing of Environment, 119, 43–54.
  • Fisher, J. B., and ECOSTRESS Algorithm Development Team. (2015). ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS): Level-3 Evapotranspiration LE(ET_PT-JPL) Algorithm Theoretical Basis Document (ATBD) Rep. Pasadena: Jet Propulsion Laboratory, p. 24.
  • Fisher, J. B., and ECOSTRESS Algorithm Development Team (2018). ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS): Level-3 Evapotranspiration LE(ET_PT-JPL) Algorithm Theoretical Basis Document (ATBD). ECOSTRESS Science Document no. D-94645. Jet Propulsion Laboratory, Pasadena.
  • Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Cawse-Nicholson, K., Wang, A., & Hook, S. (2020). ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resources Research. in press.
  • Fisher, J. B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., & Wood, E. F. (2017). The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research, 53(4), 2618–2626.
  • Fisher, J. B., Tu, K. P., & Baldocchi, D. D. (2008). Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 112(3), 901–919.
  • Fisher, J. B., Whittaker, R. H., & Malhi, Y. (2011). ET Come Home: A critical evaluation of the use of evapotranspiration in geographical ecology. Global Ecology and Biogeography, 20(1), 1–18.
  • Flexas, J., Bota, J., Galmes, J., Medrano, H. L., & Ribas-Carbo, M. (2006). Keeping a positive carbon balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiologia Plantarum, 127(3), 343–352.
  • Foken, T. (2008). The energy balance closure problem: An overview. Ecological Applications, 18(6), 1351–1367.
  • French, A. N., Hunsaker, D., Thorp, K., & Clarke, T. (2009). Evapotranspiration over a camelina crop at Maricopa, Arizona. Industrial Crops and Products, 29(2–3), 289–300.
  • French, A. N., Hunsaker, D. J., & Thorp, K. R. (2015). Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sensing of Environment, 158, 281–294.
  • Gebler, S., Franssen, H.-J. H., Pütz, T., Post, H., Schmidt, M., & Vereecken, H. (2015). Actual evapotranspiration and precipitation measured by lysimeters: A comparison with eddy covariance and tipping bucket. Hydrology and Earth System Sciences, 19(5), 2145–2161.
  • Gharsallah, O., Facchi, A., & Gandolf, C. (2013). Comparison of six evapotranspiration models for a surface irrigated maize agro-ecosystem in Northern Italy. Agricultural Water Management, 130, 119–130.
  • Gokmen, M., Vekerdy, Z., Verhoef, A., Verhoef, W., Batelaan, O., & van der Tol, C. (2012). Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sensing of Environment, 121, 261–274.
  • Gu, C., Ma, J., Zhu, G., Yang, H., Zhang, K., Wang, Y., & Gu, C. (2018). Partitioning evapotranspiration using an optimized satellite-based ET model across biomes. Agricultural and Forest Meteorology, 259, 355–363.
  • Gu, L., Meyers, T., Pallardy, S. G., Hanson, P. J., Yang, B., Heuer, M., & Wullschleger, S. D. (2006). Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. Journal of Geophysical Research, 111(D16). doi:10.1029/2006jd007161
  • Halliwell, D. H., & Rouse, W. R. (1987). Soil heat flux in permafrost: Characteristics and accuracy of measurement. Journal of Climatology, 7(6), 571–584.
  • Hao, C., Zhang, J., & Yao, F. (2015). Combination of multi-sensor remote sensing data for drought monitoring over Southwest China. International Journal of Applied Earth Observation and Geoinformation, 35, 270–283.
  • Hill, M. J., Senarath, U., Lee, A., Zeppel, M., Nightingale, J. M., Williams, R. J., & McVicar, T. R. (2006). Assessment of the MODIS LAI product for Australian ecosystems. Remote Sensing of Environment, 101(4), 495–518.
  • Hssaine, B. A., Merlin, O., Rafi, Z., Ezzahar, J., Jarlan, L., Khabba, S., & Er-Raki, S. (2018). Calibrating an evapotranspiration model using radiometric surface temperature, vegetation cover fraction and near-surface soil moisture data. Agricultural and Forest Meteorology, 256–257, 104–115.
  • Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 17(4), 1133–1138.
  • Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., & Fawcett, P. J. (2013). Terrestrial water fluxes dominated by transpiration. Nature, 496(7445), 347–350.
  • Jiang, C., & Ryu, Y. (2016). Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sensing of Environment, 186, 528–547.
  • Jiang, L., & Islam, S. (2001). Estimation of surface evaporation map over Southern Great Plains using remote sensing data. Water Resources Research, 37(2), 329–340.
  • Jiang, L., Islam, S., Guo, W., Singh, J., Antarpreet, S., Sharika, U. S., … Eltahir, E. (2009). A satellite-based Daily Actual Evapotranspiration estimation algorithm over South Florida. Global and Planetary Change, 67(1–2), 62–77.
  • Jiménez, C., Martens, B., Miralles, D. G., Fisher, J. B., Beck, H. E., & Fernández-Prieto, D. (2018). Exploring the merging of the global land evaporation WACMOS-ET products based on local tower measurements. Hydrology and Earth System Sciences, 22(8), 4513–4533.
  • Jiménez, C., Prigent, C., Mueller, B., Seneviratne, S. I., McCabe, M. F., Wood, E. F., … Wang, K. (2011). Global inter-comparison of 12 land surface heat flux estimates. Journal of Geophysical Research, 116(D2). doi:10.1029/2010JD014545
  • Jin, Y., Randerson, J. T., & Goulden, M. L. (2011). Continental-scale net radiation and evapotranspiration estimated using MODIS satellite observations. Remote Sensing of Environment, 115(9), 2302–2319.
  • Jung, M., Reichstein, M., & Bondeau, A. (2009). Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6(10), 2001–2013.
  • Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., … Zhang, K. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954.
  • Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., … Williams, C. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences, 116(3), 1–16.
  • Komatsu, H., Shinohara, Y., Kume, T., & Otsuki, K. (2008). Relationship between annual rainfall and interception ratio for forests across Japan. Forest Ecology and Management, 256(5), 1189–1197.
  • Li, F., & Shen, Y. (2014). Progress in remote sensing-based models for surface heat and water Fluxes. Resources Science, 36(7), 1478–1488. (in Chinese).
  • Li, Z., Liu, X., Ma, T., Kejia, D., Zhou, Q., Yao, B., & Niu, T. (2013). Retrieval of the surface evapotranspiration patterns in the alpine grassland–wetland ecosystem applying SEBAL model in the source region of the Yellow River, China. Ecological Modelling, 270, 64–75.
  • Masseroni, D., Corbari, C., & Mancini, M. (2014). Limitations and improvements of the energy balance closure with reference to experimental data measured over a maize field. Atmósfera, 27(4), 335–352.
  • Masukata, H., Ando, M., & Ogawa, H. (1990). Throughfall, stemflow and interception of rainwater in an evergreen broadleaved forest. Ecological Research, 5(3), 303–316.
  • McCabe, M. F., Ershadi, A., Jimenez, C., Miralles, D. G., Michel, D., & Wood, E. F. (2016). The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data. Geoscientific Model Development, 9(1), 283–305.
  • McCabe, M. F., Miralles, D. G., Holmes, T. R., & Fisher, J. B. (2019). Advances in the remote sensing of terrestrial evaporation. Remote Sensing, 11(9), 1138. doi:10.3390/rs11091138.
  • Merlin, O., Chirouze, J., Olioso, A. T., Jarlan, L., Chehbouni, G., & Boulet, G. (2014). An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S). Agricultural and Forest Meteorology, 184, 188–203.
  • Michel, D., Jiménez, C., Miralles, D. G., Jung, M., Hirschi, M., Ershadi, A., … Fernández-Prieto, D. (2016). The WACMOS-ET project–Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrology and Earth System Sciences, 20(2), 803–822.
  • Miralles, D. G., De Jeu, R. A. M., Gash, J. H., Holmes, T. R. H., & Dolman, A. J. (2011). Magnitude and variability of land evaporation and its components at the global scale. Hydrology and Earth System Sciences, 15(3), 967–981.
  • Miralles, D. G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M. F., … Fisher, J. B. (2016). The WACMOS-ET project, part 2: Evaluation of global terrestrial evaporation data sets. Hydrology and Earth System Sciences, 20(2), 823–842.
  • Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205–224.
  • Monteith, J. L. (1995). Accommodation between transpiring vegetation and the convective boundary layer. Journal of Hydrology, 166(3–4), 251–263.
  • Mu, Q., Heinsch, F. A., Zhao, M., & Running, S. W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment, 111(4), 519–536.
  • Mu, Q., Zhao, M., & Running, S. W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115(8), 1781–1800.
  • Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., … Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrology and Earth System Sciences, 17(10), 3707–3720.
  • Mueller, B., Seneviratne, S. I., Jiménez, C., Corti, T., Hirschi, M., Balsamo, G., … Zhang, Y. (2011). Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophysical Research Letters, 38(6). doi:10.1029/2010GL046230
  • Nagler, P. L., Scott, R. L., Westenburg, C., Cleverly, J. R., Glenn, E. P., & Huete, A. R. (2005). Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sensing of Environment, 97(3), 337–351.
  • Nassif, D. S. P., Marin, F. R., & Costa, L. G. (2014). Evapotranspiration and transpiration coupling to the atmosphere of Sugarcane in Southern Brazil: Scaling up from leaf to field. Sugar Tech, 16(3), 250–254.
  • Norman, J. M., Kustas, W. P., & Humes, K. S. (1995). Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agricultural and Forest Meteorology, 80(2–4), 297.
  • Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068–1072.
  • Pastorello, G. Z., Papale, D., Chu, H., Trotta, C., Agarwal, D., Canfora, E., … Torn, M. (2017). A new data set to keep a sharper eye on land-air exchanges. EOS, Transactions American Geophysical Union, 98. doi:10.1029/2017EO071597
  • Penman, H. L. (1948). Natural evaporation from open water, hare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032), 120–145.
  • Penman, H. L. (1956). Evaporation: An introductory survey. Netherlands Journal of Agricultural Science, 4, 7–29.
  • Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 147, 4–20.
  • Polhamus, A., Fisher, J. B., & Tu, K. P. (2013). What controls the error structure in evapotranspiration models? Agricultural and Forest Meteorology, 169, 12–24.
  • Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2), 81–92.
  • Purdy, A., Fisher, J. B., Goulden, M. L., & Famiglietti, J. S. (2016). Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally. Journal of Geophysical Research: Biogeosciences, 121(12), 3045–3059.
  • Purdy, A. J., Fisher, J. B., Goulden, M. L., Colliander, A., Halverson, G., Tu, K., & Famiglietti, J. S. (2018). SMAP soil moisture improves global evapotranspiration. Remote Sensing of Environment, 219, 1–14.
  • Ren, Q., Yang, Z., Li, C., & Zhang, T. (2013). Advances in the study of crop evapotranspiration in changing environment. Advanced Earth Science, 28(11), 1227–1238. (in Chinese).
  • Ryu, Y., Baldocchi, D. D., Kobayashi, H., Van Ingen, C., Li, J., Black, T. A., … Roupsard, O. (2011). Integration of MODIS land and atmosphere products with a coupled-process model to estimate gross primary productivity and evapotranspiration from 1 km to global scales. Global Biogeochemical Cycles, 25(4), 1–24.
  • Schlesinger, W. H., & Jasechko, S. (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189–190, 115–117.
  • Shao, X., Yao, F., Zhang, J., & Li, X. (2013). Analysis of drought in North China based on evapotranspiration drought index. Meteorological Monthly, 39, 1154–1162.
  • Shuttleworth, W. J., & Wallace, J. S. (1985). Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111(469), 839–855. 551.573:551.584.4:556.132.6.
  • Silva, I. C., & Okumura, T. (1996). Throughfall, stemflow and interception loss in a mixed white oak forest (Quercus serrata Thunb.). Journal of Forest Research, 1(3), 123–129.
  • Stoy, P. C., El-Madany, T. S., Fisher, J. B., Gentine, P., Gerken, T., Good, S. P., … Wolf, S. (2019). Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences, 16(19), 3747–3775.
  • Su, Z. (2001). A surface energy balance model for estimation of turbulent heat fluxes from point to continental scale. In Su & Jacobs (Eds.), Advanced Earth observation-land surface climate (Vol. UPS-2, pp. 184). Netherlands: Publications of the National Remote Sensing Board (BCRS).
  • Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85–100.
  • Talsma, C. J., Good, S. P., Jimenez, C., Martens, B., Fisher, J. B., Miralles, D. G., & Purdy, A. J. (2018b). Partitioning of evapotranspiration in remote sensing-based models. Agricultural and Forest Meteorology, 260–261, 131–143.
  • Talsma, C. J., Good, S. P., Miralles, D. G., Fisher, J. B., Martens, B., Jimenez, C., & Purdy, A. J. (2018a). Sensitivity of evapotranspiration components in remote sensing-based models. Remote Sensing, 10(10), 1601.
  • Tang, R., Li, Z., & Tang, B. (2010). An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sensing of Environment, 114(3), 540–551.
  • Twine, T. E., Kustas, W. P., Norman, J. M., Cook, D. R., Houser, P. R., Meyers, T. P., … Wesely, M. L. (2000). Correcting eddy-covariance flux underestimates over a grassland. Agricultural and Forest Meteorology, 103(3), 279–300.
  • Valayamkunnath, P., Sridhara, V., Zhao, W., & Allen, R. G. (2018). Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate. Agricultural and Forest Meteorology, 248, 22–47.
  • Vinukollu, R. K., Wood, E. F., Ferguson, C. R., & Fisher, J. B. (2011). Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801–823.
  • Wallace, J., Macfarlane, C., McJannet, D. E., Ellis, T., Grigg, A., & van Dijk, A. (2013). Evaluation of forest interception estimation in the continental scale Australian Water Resources Assessment – Landscape (AWRA-L) model. Journal of Hydrology, 499, 210–223.
  • Wang, K., & Dickinson, R. E. (2012). A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 50(2). doi:10.1029/2011rg000373
  • Wang, K., Dickinson, R. E., Wild, M., & Liang, S. (2010a). Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development. Journal of Geophysical Research, 115(D20). doi:10.1029/2009jd013671
  • Wang, K., Dickinson, R. E., Wild, M., & Liang, S. (2010b). Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 2. Result. Journal of Geophysical Research. doi:10.1029/2010JD013847
  • Wang, K., Li, Z., & Cribb, M. (2006). Estimation of evaporative fraction from a combination of day and night land surface temperatures and NDVI: A new method to determine the Priestley–Taylor parameter. Remote Sensing of Environment, 102(3–4), 293–305.
  • Wang, K., & Liang, S. (2008). An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture. Journal of Hydrometeorology, 9(4), 712–727.
  • Wang, K., Wang, P., Li, Z., Cribb, M., & Sparrow, M. (2007). A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. Journal of Geophysical Research, 112(D15). doi:10.1029/2006jd008351
  • Wu, G., Liu, Y., & Wang, T. (2007). Methods and strategy for modeling daily global solar radiation with measured meteorological data – A case study in Nanchang station, China. Energy Conversion and Management, 48(9), 2447–2452.
  • Yan, H., & Shugart, H. H. (2010). An air relative-humidity-based evapotranspiration model from eddy covariance data. Journal of Geophysical Research-Atmospheres, 115(D16), D16106.
  • Yan, H., Wang, S. Q., Billesbach, D., Oechel, W., Zhang, J. H., Meyers, T., … Scott, R. (2012). Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model. Remote Sensing of Environment, 124, 581–595.
  • Yan, H., Yu, Q., Zhu, Z., Myneni, R. B., Yan, H., Wang, S., & Shugart, H. H. (2013). Diagnostic analysis of interannual variation of global land evapotranspiration over 1982–2011: Assessing the impact of ENSO. Journal of Geophysical Research: Atmospheres, 118(16), 8969–8983.
  • Yang, Y., Su, H., Zhang, R., Tian, J., & Li, L. (2015). An enhanced two-source evapotranspiration model for land (ETEML): Algorithm and evaluation. Remote Sensing of Environment, 168, 54–65.
  • Yao, W., Han, M., & Xu, S. (2010). Estimating the regional evapotranspiration in Zhalong wetland with the Two-Source Energy Balance (TSEB) model and Landsat7/ETM+ images. Ecological Informatics, 5(5), 348–358.
  • Yao, Y., Liang, S., Cheng, J., Liu, S., Fisher, J. B., Zhang, X., … Zhao, S. (2013). MODIS-driven estimation of terrestrial latent heat flux in China based on a modified Priestley–Taylor algorithm. Agricultural and Forest Meteorology, 171–172(187–202). doi:10.1016/j.agrformet.2012.11.016
  • Yao, Y., Liang, S., Li, X., Chen, J., Liu, S., Jia, K., … Roupsar, O. (2017). Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. Agricultural and Forest Meteorology, 242, 55–74.
  • Yao, Y., Liang, S., Li, X., Chen, J., Wang, K., Jia, K., … Roupsard, O. (2015). A satellite-based hybrid algorithm to determine the Priestley–Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes. Remote Sensing of Environment, 165, 216–233.
  • Yao, Y., Liang, S., Qin, Q., Wang, K., & Zhao, S. (2011). Monitoring global land surface drought based on a hybrid evapotranspiration model. International Journal of Applied Earth Observation and Geoinformation, 13(3), 447–457.
  • Zhang, J., Fu, C., & Wang, C. (2000). A study of region crop yield model influenced by water deficit based on remote sensing information and crop photosynthetic physiological characteristic. Chinese Journal of Atmospheric Sciences, 24(5), 683–693.
  • Zhang, K., Kimball, J. S., Mu, Q., Jones, L. A., Goetz, S. J., & Running, S. W. (2009). Satellite based analysis of northern ET trends and associated changes in the regional water balance from 1983 to 2005. Journal of Hydrology, 379(1–2), 92–110.
  • Zhang, K., Pan, S., Zhang, W., Xu, Y., Cao, L., Hao, Y., & Wang, Y. (2015). Influence of climate change on reference evapotranspiration and aridity index and their temporal-spatial variations in the Yellow River Basin, China, from 1961 to 2012. Quaternary International, 380–381, 75–82.
  • Zhang, Y., Kadota, T., Ohata, T., & Oyunbaatar, D. (2007). Environmental controls on evapotranspiration from sparse grassland in Mongolia. Hydrological Processes, 21(15), 2016–2027.