1,457
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Hazards of extreme events in China under different global warming targets

ORCID Icon, ORCID Icon & ORCID Icon
Pages 153-174 | Received 25 Dec 2019, Accepted 20 Apr 2020, Published online: 29 Jun 2020

References

  • Betts, R. A., Alfieri, L., Bradshaw, C., Caesar, J., Feyen, L., Friedlingstein, P., … Papadimitriou, L. (2018). Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5 C and 2 C global warming with a higher-resolution global climate model. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2119), 20160452.
  • Chen, X. C., Xu, Y., & Yao, Y. (2015). Changes in climate extremes over China in a 2 C, 3 C, and 4 C warmer world. Journal of Atmospheric Sciences, 39(6), 1123–1135.
  • Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3(1), 52–58.
  • Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier, P., & Ludwig, F. (2017). Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Climatic Change, 143(1–2), 13–26.
  • Fischer, E. M., & Knutti, R. (2015). Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Climate Change, 5(6), 560–564.
  • Gao, J., Jiao, K., & Wu, S. (2018). Quantitative assessment of ecosystem vulnerability to climate change: Methodology and application in China. Environmental Research Letters, 13(9), 094016.
  • Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M. C., Shyamsundar, P., … Noble, I. (2013). Policy: Sustainable development goals for people and planet. Nature, 495(7441), 305–307.
  • Hay, L. E., Wilby, R. L., & Leavesley, G. H. (2000). A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. Journal of the American Water Resources Association, 36(2), 387–397.
  • Hempel, S., Frieler, K., Warszawski, L., Schewe, J., & Piontek, F. (2013). A trend-preserving bias correction–the ISI-MIP approach. Earth System Dynamics, 4(2), 219–236.
  • Huang, J., Yu, H., Dai, A., Wei, Y., & Kang, L. (2017). Drylands face potential threat under 2 C global warming target. Nature Climate Change, 7(6), 417–422.
  • IPCC. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press.
  • IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Cambridge and New Yor: Cambridge University Press.
  • IPCC. (2018). Global warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge and New York: Cambridge University Press.
  • Jones, P. D., & Hulme, M. (1996). Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. International Journal of Climatology: A Journal of the Royal Meteorological Society, 16(4), 361–377.
  • Kang, S., & Eltahir, E. A. (2018). North China Plain threatened by deadly heatwaves due to climate change and irrigation. Nature Communications, 9(1), 2894.
  • Karmalkar, A. V., & Bradley, R. S. (2017). Consequences of global warming of 1.5 C and 2 C for regional temperature and precipitation changes in the contiguous United States. PLoS One, 12(1), e0168697.
  • King, A. D., & Karoly, D. J. (2017). Climate extremes in Europe at 1.5 and 2 degrees of global warming. Environmental Research Letters, 12(11), 114031.
  • King, A. D., Karoly, D. J., & Henley, B. J. (2017). Australian climate extremes at 1.5 °C and 2 °C of global warming. Nature Climate Change, 7(6), 412–416.
  • Lambert, S. J., & Boer, G. J. (2001). CMIP1 evaluation and intercomparison of coupled climate models. Climate Dynamics, 17(2–3), 83–106.
  • Li, K., Wu, S., Dai, E., & Xu, Z. (2012). Flood loss analysis and quantitative risk assessment in China. Natural Hazards, 63(2), 737–760.
  • Lin, L., Wang, Z., Xu, Y., Zhang, X., Zhang, H., & Dong, W. (2018). Additional intensification of seasonal heat and flooding extreme over China in a 2 C warmer world compared to 1.5 C. Earth’s Future, 6(7), 968–978.
  • Liu, W., Sun, F., Lim, W. H., Zhang, J., Wang, H., Shiogama, H., & Zhang, Y. (2018). Global drought and severe drought-affected populations in 1.5 and 2 C warmer worlds. Earth System Dynamics, 9(1), 267–283.
  • Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994–997.
  • Milly, P. C. D., Wetherald, R. T., Dunne, K. A., & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature, 415(6871), 514–517.
  • Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research: Atmospheres, 117(D8), 1–22.
  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., … Meehl, G. A. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.
  • Nikulin, G., Lennard, C., Dosio, A., Kjellström, E., Chen, Y., Hänsler, A., … van Meijgaard, E. (2018). The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environmental Research Letters, 13(6), 065003.
  • Oki, T., & Kanae, S. (2006). Global hydrological cycles and world water resources. Science, 313(5790), 1068–1072.
  • Polade, S. D., Pierce, D. W., Cayan, D. R., Gershunov, A., & Dettinger, M. D. (2014). The key role of dry days in changing regional climate and precipitation regimes. Scientific Reports, 4(1), 4364.
  • Post, E., Steinman, B. A., & Mann, M. E. (2018). Acceleration of phenological advance and warming with latitude over the past century. Scientific Reports, 8(1), 3927.
  • Qin, D. H. (2015). China National Assessment Report on Risk Management and Adaptation of Climate Extremes and Disasters. Beijing, China: Science Press.
  • Roudier, P., Andersson, J. C., Donnelly, C., Feyen, L., Greuell, W., & Ludwig, F. (2016). Projections of future floods and hydrological droughts in Europe under a+ 2 C global warming. Climatic Change, 135(2), 341–355.
  • Russo, S., Dosio, A., Graversen, R. G., Sillmann, J., Carrao, H., Dunbar, M. B., … Vogt, J. V. (2014). Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research: Atmospheres, 119(22), 500–512.
  • Scholze, M., Knorr, W., Arnell, N. W., & Prentice, I. C. (2006). A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences, 103(35), 13116–13120.
  • Shi, C., Jiang, Z. H., Chen, W. L., & Li, L. (2018). Changes in temperature extremes over China under 1.5 C and 2 C global warming targets. Advances in Climate Change Research, 9(2), 120–129.
  • Steffen, W., Rockström, J., Richardson, K., Lenton, T. M., Folke, C., Liverman, D., … Donges, J. F. (2018). Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences, 115(33), 8252–8259.
  • Su, B., Huang, J., Fischer, T., Wang, Y., Kundzewicz, Z. W., Zhai, J., … Jiang, T. (2018). Drought losses in China might double between the 1.5° C and 2.0° C warming. Proceedings of the National Academy of Sciences, 115(42), 10600–10605.
  • Sun, Y., Zhang, X., Zwiers, F. W., Song, L., Wan, H., Hu, T., … Ren, G. (2014). Rapid increase in the risk of extreme summer heat in Eastern China. Nature Climate Change, 4(12), 1082–1085.
  • Tang, G. L., Ding, Y. H., Wang, S. W., Ren, G. Y., Liu, H. B., & Zhang, L. (2009). Comparative analysis of the time series of surface air temperature over China for the last 100 years. Advances in Climate Change Research, 5, 71–78.
  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498.
  • Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., … Edmonds, J. A. (2011). RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1–2), 77–94.
  • Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138.
  • Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4(1), 17–22.
  • UN. (2015). Sustainable development goals. http://www.un.org/sustainabledevelopment/sustainable-development-goals/
  • UNFCCC. (1992). United Nations Framework Convention on Climate Change. Report No.FCCC/INFORMAL/84.
  • UNFCCC. (2015). Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L.9/Rev.1.
  • UNISDR, & CRED. (2018). Economic losses, poverty & disasters: 1998-2017. Brussels, Belgium: Centre for Research on the Epidemiology of Disasters, CRED.
  • Van Loon, A. F., Gleeson, T., Clark, J., Van Dijk, A. I., Stahl, K., Hannaford, J., … Hannah, D. M. (2016). Drought in the Anthropocene. Nature Geoscience, 9(2), 89–91.
  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., … Masui, T. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5–31.
  • Wang, G., Wang, D., Trenberth, K. E., Erfanian, A., Yu, M., Bosilovich, M. G., & Parr, D. T. (2017). The peak structure and future changes of the relationships between extreme precipitation and temperature. Nature Climate Change, 7(4), 268–274.
  • Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J. (2014). The inter-sectoral impact model intercomparison project (ISI–MIP): Project framework. Proceedings of the National Academy of Sciences, 111(9), 3228–3232.
  • Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Österle, H., … Best, M. (2011). Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. Journal of Hydrometeorology, 12(5), 823–848.
  • Wu, S. H., Pan, T., Liu, Y. H., Deng, H. Y., Jiao, K. W., Lu, Q., & Gao, J. B. (2017). Comprehensive climate change risk regionalization of China. Acta Geographica Sinica, 72(1), 3–17.
  • Xie, S. P., Deser, C., Vecchi, G. A., Collins, M., Delworth, T. L., Hall, A., … Watanabe, M. (2015). Towards predictive understanding of regional climate change. Nature Climate Change, 5(10), 921–930.
  • Xu, Y., Zhang, B., Zhou, B. T., Dong, S. Y., Yu, L., & Li, R. K. (2014). Projected flood risks in China based on CMIP5. Advances in Climate Change Research, 10(4), 268–275.
  • Zhang, L., Ding, Y. H., Wu, T. W., Xin, X. G., Zhang, Y. W., & Xu, Y. (2013). The 21st century annual mean surface air temperature change and the 2 C warming threshold over the globe and China as projected by the CMIP5 models. Acta Meteorol Sin, 71(6), 1047–1060.
  • Zhou, T., & Yu, R. (2006). Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. Journal of Climate, 19(22), 5843–5858.