2,133
Views
3
CrossRef citations to date
0
Altmetric
General articles

Assessment of water-induced soil erosion as a threat to cultural heritage sites: the case of Chania prefecture, Crete Island, Greece

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 561-579 | Received 13 Jan 2021, Accepted 22 Apr 2021, Published online: 27 Jul 2021

References

  • Accardo, G., Giani, E., & Giovagnoli, A. (2003). The risk map of Italian cultural heritage. Journal of Architectural Conservation, 9(2), 41–57.
  • Agapiou, A., Alexakis, D. D., Lysandrou, V., Sarris, A., Cuca, B., Themistocleous, K., & Hadjimitsis, D. G. (2015). Impact of urban sprawl to cultural heritage monuments: the case study of Paphos area in Cyprus. Journal of Cultural Heritage, 16(5), 671–680.
  • Agapiou, A., Lysandrou, V., & Hadjimitsis, D. G. (2017). Optical remote sensing potentials for looting detection. Geosciences, 7(4), 98.
  • Agapiou, A., Lysandrou, V., & Hadjimitsis, D. G. (2020). A European-scale investigation of soil erosion threat to subsurface archaeological remains. Remote Sensing, 12(4), 675.
  • Agapiou, A., Lysandrou, V., Themistocleous, K., & Hadjimitsis, D. G. (2016). Risk assessment of cultural heritage sites clusters using satellite imagery and GIS: The case study of Paphos District, Cyprus. Natural Hazards, 83(S1), S5–S20.
  • Alexakis, D., & Sarris, A. (2010). Environmental and Human Risk Assessment of the Prehistoric and Historic Archaeological Sites of Western Crete (Greece) with the Use of GIS, Remote Sensing, Fuzzy Logic and Neural Networks. In M. Ioannides, D. Fellner, A. Georgopoulos, & D. G. Hadjimitsis (Eds. DOI: 10.1007/978-3-642-16873-4_25), EuroMed 2010: Digital Heritage. Lecture Notes in Computer Science (Vol. 6436, pp. 332–342). Berlin, Heidelberg: Springer.
  • Argyriou, A. V., Teeuw, R. M., & Sarris, A. (2017). GIS-based landform classification of bronze age archaeological sites on Crete Island. PLoS ONE, 12(2), e0170727.
  • Awange, J., & Kiema, J. (2019). Fundamentals of GIS. In Environmental Geoinformatics – Extreme Hydro-Climatic and Food Security Challenges: Exploiting the Big Data. “Environmental Science and Engineering” book series (pp. 203–212). Cham, Switzerland: Springer.
  • Barmaki, M., Pazira, E., & Hedayat, N. (2011). Investigation of relationships among the environmental factors and water erosion changes using EPM model and GIS. International Research Journal of Applied and Basic Sciences, 3(5), 945–949.
  • Campbell, J. B., & Wynne, R. H. (2011). Introduction to Remote Sensing (5th edition ed., pp. 3–30). New York, USA: The Guilford Press.
  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.
  • Choi, K., Arnhold, S., Huwe, B., & Reineking, B. (2017). Daily based morgan–morgan–finney (DMMF) model: A spatially distributed conceptual soil erosion model to simulate complex soil surface configurations. Water, 9(4), 278.
  • Cuca, B. (2020). Copernicus sentinel imagery for more risk-resilient historic cities in coastal zones: Contribution to the monitoring of albenga archaeological site and delta of river Centa. Applied Geomatics. doi:10.1007/s12518-020-00340-5
  • Cuca, B., & Agapiou, A. (2018). Impact of land-use change and soil erosion on cultural landscapes: The case of cultural paths and sites in Paphos district, Cyprus. Applied Geomatics, 10(4), 515–527.
  • Della Torre, S. (2020). Italian perspective on the planned preventive conservation of architectural heritage. Frontiers of Architectural Research. doi:10.1016/j.foar.2020.07.008
  • Elaloui, A., Marrakchi, C., Fekri, A., Maimouni, S., & Aradi, M. (2017). USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Modeling Earth Systems and Environment, 3(3), 873–885.
  • ELSTAT – Hellenic Statistical Authority. (2011). Population and housing census: resident population. Retrieved from https://www.statistics.gr/el/statistics/pop
  • Garcia Rodriguez, J. L., & Gimenez Suarez, M. C. (2012). Methodology for estimating the topographic factor LS of RUSLE3D and USPED using GIS. Geomorphology, 175–176, 98–106.
  • Gelagay, H. S., & Minale, A. S. (2016). Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. International Soil and Water Conservation Research, 4(2), 126–136.
  • Giardino, J. M. (2011). A history of NASA remote sensing contributions to archaeology. Journal of Archaeological Science, 38(9), 2003–2009.
  • Glowacki, K. T., & Vogeikoff-Brogan, N. (2011). STEGA: The Archaeology of Houses and Households in Ancient Crete (Hesperia Supplement) (pp. 520). Princeton, New Jersey, USA: The American School of Classical Studies at Athens.
  • Grillakis, M. G., Polykretis, C., & Alexakis, D. D. (2020). Past and projected climate change impacts on rainfall erosivity: advancing our knowledge for the eastern Mediterranean island of Crete. Catena, 193, 104625.
  • Halecki, W., Kruk, E., & Ryczek, M. (2018). Evaluation of water erosion at a mountain catchment in Poland using the G2 model. Catena, 164, 116–124.
  • Hapciuc, O. E., Romanescu, G., Minea, I., Iosub, M., Enea, A., & Sandu, I. (2016). Flood susceptibility analysis of the cultural heritage in the sucevita catchment (Romania). International Journal of Conservation Science, 7(2), 501–510.
  • Karydas, C. G., & Panagos, P. (2018). The G2 erosion model: an algorithm for month-time step assessments. Environmental Research, 161, 256–267.
  • Kincey, M., Gerrard, C., & Warburton, J. (2017). Quantifying erosion of ‘at risk’ archaeological sites using repeat terrestrial laser scanning. Journal of Archaeological Science: Reports, 12, 405–424.
  • Kourgialas, N. N., Koubouris, G. C., Karatzas, G. P., & Metzidakis, I. (2016). Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: the effect of climate change. Natural Hazards, 83(S1), S65–S81.
  • Lasaponara, R., Leucci, G., Masini, N., & Persico, R. (2014). Investigating archaeological looting using satellite images and GEORADAR: The experience in lambayeque in North Peru. Journal of Archaeological Science, 42, 216–230.
  • Leh, M., Bajwa, S., & Chaubey, I. (2013). Impact of land use change on erosion risk: An integrated remote sensing, geographic information system and modeling methodology. Land Degradation & Development, 24, 409–421.
  • Liu, J., Xu, Z., Chen, F., Chen, F., & Zhang, L. (2019). Flood hazard mapping and assessment on the Angkor World Heritage Site, Cambodia. Remote Sensing, 11(1), 98.
  • Lombardo, L., Tanyas, H., & Nicu, I. C. (2020). Spatial modeling of multi-hazard threat to cultural heritage sites. Engineering Geology, 277, 105776.
  • Lysandrou, V., & Agapiou, A. (2016). Cities of the dead: Approaching the landscape of hellenistic and roman necropoleis of Cyprus. Archaeological and Anthropological Sciences, 8(4), 867–877.
  • Maury, S., Gholkar, M., Jadhav, A., & Rane, N. (2019). Geophysical evaluation of soils and soil loss estimation in a semiarid region of Maharashtra using revised universal soil loss equation (RUSLE) and GIS methods. Environmental Earth Sciences, 78(5), 144.
  • Mitasova, H., Hofierka, J., Zlocha, M., & Iverson, L. R. (1996). Modeling topographic potential for erosion and deposition using GIS. International Journal of GIS, 10, 629–641.
  • Moore, I. D., & Burch, G. J. (1986). Modeling erosion and deposition: Topographic effects. Transactions of the ASAE, 29(6), 1624–1630.
  • Morgan, R. P. C. (2005). Soil Erosion and Conservation (pp. 304). Oxford, UK: Blackwell Publishing.
  • Negula, I. D., Sofronie, R., Virsta, A., & Badea, A. (2015). Earth observation for the world cultural and natural heritage. Agriculture and Agricultural Science Procedia, 6, 438–445.
  • Oppio, A., Bottero, M., Ferretti, V., Fratesi, U., Ponzini, D., & Pracchi, V. (2015). Giving space to multicriteria analysis for complex cultural heritage systems: The case of the castles in Valle D’Aosta Region, Italy. Journal of Cultural Heritage, 16(6), 779–789.
  • Ortiz, R., Ortiz, P., Martín, J. M., & Vázquez, M. A. (2016). A new approach to the assessment of flooding and dampness hazards in cultural heritage, applied to the historic centre of Seville (Spain). Science of the Total Environment, 551–552, 546–555.
  • Pal, S. C., & Chakrabortty, R. (2019). Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model. Advances in Space Research, 64(2), 352–377.
  • Panagos, P., Borrelli, P., Meusburger, K., Van Der Zanden, E. H., Poesen, J., & Alewell, C. (2015b). Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European Scale. Environmental Science & Policy, 51, 23–34.
  • Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., … Alewell, C. (2015a). The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy, 54, 438–447.
  • Pandey, A., Himanshu, S. K., Mishra, S. K., & Singh, V. P. (2016). Physically based soil erosion and sediment yield models revisited. Catena, 147, 595–620.
  • Panou, C., Ragia, L., Dimelli, D., & Mania, K. (2018). An architecture for mobile outdoors augmented reality for cultural heritage. ISPRS International Journal of Geo-Information, 7(12), 463.
  • Pastonchi, L., Barra, A., Monserrat, O., Luzi, G., Solari, L., & Tofani, V. (2018). Satellite data to improve the knowledge of geohazards in world heritage sites. Remote Sensing, 10(7), 992.
  • Phinzi, K., & Ngetar, N. S. (2019). The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A review. International Soil and Water Conservation Research, 7(1), 27–46.
  • Polykretis, C., Alexakis, D. D., Grillakis, M. G., & Manoudakis, S. (2020). Assessment of intra-annual and inter-annual variabilities of soil erosion in Crete Island (Greece) by incorporating the dynamic “Nature” of R and C-factors in RUSLE modeling. Remote Sensing, 12(15), 2439.
  • Ravankhah, M., De Wit, R., Argyriou, A. V., Chliaoutakis, A., Revez, M. J., Birkmann, J., … Giapitsoglou, K. (2019). Integrated assessment of natural hazards, including climate change’s influences, for cultural heritage sites: the case of the historic centre of rethymno in Greece. International Journal of Disaster Risk Science, 10(3), 343–361.
  • Salamon, A., Netzer-Cohen, C., Cohen, M., & Zilberman, E. (2018). Preliminary methodology for qualitative assessment of earthquake hazards to historical monuments in Israel. International Journal of Disaster Risk Reduction, 31, 1062–1081.
  • Sarris, A., Peraki, E., Chatzoyiannaki, N., Elvanidou, M., Kappa, E., Kakoulaki, G., … Athanasaki, K. (2009). Time drilling through the past of the Island of Crete. In A. Velho & H. Kamermans (eds), Technology and Methodology for Archaeological Practice: Practical applications for the past reconstruction/Technologie et Méthodologie pour la pratique en Archéologie: Applications pratiques pour la reconstruction du passé. Proceedings of the XV UISPP World Congress (Lisbon, 4-9 September 2006)/Actes du XV Congrès Mondial (Lisbonne, 4-9 Septembre 2006), Vol. 37, pp. 115–123.
  • Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P., & Macomber, S. A. (2001). Classification and change detection using landsat TM data: when and how to correct atmospheric effects? Remote Sensing of Environment, 75(2), 230–244.
  • Spennemann, D. H. R. (1999). Cultural heritage conservation during emergency management: Luxury or necessity? International Journal of Public Administration, 2(5), 745–804.
  • Srivastava, N., & Rao, S. (2016). Learning-based text classifiers using the mahalanobis distance for correlated datasets. International Journal of Big Data Intelligence, 3(1), 1–9.
  • Sujatha, E. R., & Sridhar, V. (2018). Spatial prediction of erosion risk of a small mountainous watershed using RUSLE: A case-study of the palar sub-watershed in Kodaikanal, South India. Water, 10(11), 1608.
  • Tsanis, I. K., Koutroulis, A. G., Daliakopoulos, I. N., & Jacod, D. (2011). Severe climate-induced water shortage and extremes in Crete. Climatic Change, 106(4), 667–677.
  • UNESCO World Heritage Centre. (2017). The Operational Guidelines for the Implementation of the World Heritage Convention. Retrieved from https://whc.unesco.org/en/guidelines/
  • Valagussa, A., Frattini, P., Crosta, G., Spizzichino, D., Leoni, G., & Margottini, C. (2020). Multi-risk analysis on European cultural and natural UNESCO heritage sites. Natural Hazards. doi:10.1007/s11069-020-04417-7
  • Williams, R. J., & Renard, K. G. (1983). EPIC—A new method for assessing erosion’s effect on soil productivity. Journal of Soil and Water Conservation, 38, 381–383.