2,118
Views
4
CrossRef citations to date
0
Altmetric
Perspective Article

Atmospheric and ecosystem big data providing key contributions in reaching United Nations’ Sustainable Development Goals

ORCID Icon, , , , , , ORCID Icon & show all
Pages 277-305 | Received 26 Mar 2021, Accepted 27 May 2021, Published online: 05 Jul 2021

References

  • Aalto, J., Porcar‐Castell, A., Atherton, J., Kolari, P., Pohja, T., Hari, P., … Bäck, J. (2015). Onset of photosynthesis in spring speeds up monoterpene synthesis and leads to emission bursts, Plant, Cell & Environment, 38(11), 2299–2312.
  • ACTRIS (2020) ACTRIS activities connected to the COVID-19 and lockdown in Europe. https://www.actris.eu/news-events/news/actris-activities-connected-covid-19-and-lockdown-europe-0, (accessed 24 March 2021).
  • Alekseychik, P., Lappalainen, H. K., Petäjä, T., Zaitseva, N., Heimann, M., Laurila, T., … Kulmala, M. (2016). Ground-based station network in Arctic and Subarctic Eurasia: An overview. Geography Environment Sustainability, 9(2), 75–88.
  • Arneth, A., Harrison, S. P., Bartlein, P. J., Bartlein, P. J., Bartlein, P. J., Feichter, H., … Zaehle, S. (2010). Terrestrial biogeochemical feedbacks in the climate system: From past to future. Nature Geoscience, 3(8), 525–532.
  • Asmi, A., Collaud Coen, M., Ogren, J. A., Andrews, E., Sheridan, P., Jefferson, A., … Laj, P. (2013). Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations. Atmospheric Chemistry and Physics, 13, 895–916.
  • Baklanov, A., Molina, L. T., & Gauss, M. (2015). Megacities, air quality and climate. Atmospheric Environment, 126, 235–249.
  • Baklanov, A., Smith Korsholm, U., Nuterman, R., Mahura, A., Nielsen, K. P., Sass, B. H., González-Aparicio, I. (2017). Enviro-HIRLAM online integrated meteorology–chemistry modelling system: Strategy, methodology, developments and applications (v7.2). Geoscientific Model Development, 10(8), 2971–2999.
  • Boy, M., Petäjä, T., Dal Maso, M., Rannik, Ü., Rinne, J., Aalto, P., Kulmala, M. (2004). A of the field measurement campaign in Hyytiälä, August 2001 in the frame of the EU project OSOA. Atmospheric Chemistry and Physics, 4(3), 657–678.
  • Cai, J., Chu, B., Yao, L., Yan, C., Heikkinen, L. M., Zheng, F., Daellenbach, K. R. (2020). Size-segregated particle number and mass concentrations from different emission sources in urban Beijing. Atmospheric Chemistry and Physics, 20, 12721–12740.
  • Chen, T., Liu, J., Ma, Q., Chu, B., Zhang, P., Ma, J., He, H. (2021). Measurement report: Effects of photochemical aging on the formation and evolution of summertime secondary aerosol in Beijing. Atmospheric Chemistry and Physics, 21(2), 1341–1356.
  • Chubarova, N. E., Androsova, E. E., Kirsanov, A. A., Vogel, B., Vogel, H., Popovicheva, O. B., & Rivin, G. S. (2019). Aerosol and Its Radiative Effects during the Aeroradcity 2018 Moscow Experiment. Geography, Environment, Sustainability, 12(4), 114–131.
  • Commission, E. (2019). COM(2019)640 final, The European Green Deal, Brussels, https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:52019DC0640, (accessed 22 March 2021).
  • Concilio, G., Molinari, F., & Morelli, N. (2017). Empowering Citizens with Open Data by Urban Hackathons, Conference: 2017 Conference for E-Democracy and Open Government (CeDEM), Danube University Krems, Austria. doi.https://doi.org/10.1109/CeDEM.2017.2
  • Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., … Prévôt, A. S. H. (2014). Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 14(12), 6159–6176.
  • Crowley, J. N., Pouvesle, N., Phillips, G. J., Axinte, R., Fischer, H., Petäjä, T., … Lelieveld, J. (2018). Insights into HOX and ROX chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide. Atmospheric Chemistry and Physics, 18, 13457–13479.
  • Ding, A., Huang, X., Nie, W., Sun, J., Kerminen, V.-M., Petaja, T., Fu, C. (2016a). Enhanced haze pollution by black carbon in megacities in China, Geophys. Geophysical Research Letters, 43(6), 2873–2879.
  • Ding, A., Nie, W., Huang, X., Chi, X., Sun, J., Kerminen, V.-M., Fu, C. (2016b). Long-term observation of air pollution-weather/climate interactions at the SORPES station: A review and outlook. Frontiers of Environmental Science & Engineering, 10(5), 15.
  • Ding, A. J., Fu, C. B., Yang, X. Q., Sun, J. N., Zheng, L. F., Xie, Y. N., Kulmala, M. (2013). Ozone and fine particle in the western YangtzeRiver Delta: An overview of 1 yr data at the SORPES station. Atmospheric Chemistry and Physics, 13(2013), 5813–5830.
  • Dinoi, A., Gulli, D., Ammoscato, I., Calidonna, C. R., & Contini, D. (2021). Impact of the Coronavirus Pandemic Lockdown on Atmospheric Nanoparticle Concentrations in Two Sites of Southern Italy. Atmosphere, 12(3), 352.
  • Doherty, R. M., Heal, M. R., & O’Connor, F. M. (2017). Climate change impacts on human health over Europe through its effect on air quality. Environmental Health, 16(1), 33–44.
  • E/HLS(2016)1, Ministerial declaration of the 2016 high-level political forum on sustainable development, convened under the auspices of the Economic and Social Council, on the theme “Ensuring that no one is left behind” https://documents-dds-ny.un.org/doc/UNDOC/GEN/N16/241/66/PDF/N1624166.pdf?OpenElement, ( accessed 22 March 2021).
  • Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Mentel, T. F. (2014). A Large Source of Low-volatility Secondary Organic Aerosol. Nature, 506(7489), 476–479.
  • Espey, J. (2019). Sustainable development will falter without data. Nature, 571(7765), 299.
  • European Commission (2020). COM(2020)21 final, European Green Deal Investment Plan, Brussels, https://www.eumonitor.eu/9353000/1/j9vvik7m1c3gyxp/vl5bgbajymzx, (accessed 22 March 2021).
  • Ezhova, E., Ylivinkka, I., Kuusk, J., Komsaare, K., Vana, M., Krasnova, A., Kulmala, M. (2018). Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests. Atmospheric Chemistry and Physics, 18, 17863–17881.
  • Fernández-Martínez, M., Vicca, S., Janssens, I. A., Ciais, P., Obersteiner, M., Bartrons, M., Peñuelas, J. (2017). Atmospheric deposition, CO2, and change in the land carbon sink. Scientific Reports, 7(1), 9632.
  • Ford, J. D., Tilleard, S. E., Berrang-Ford, L., Araos, M., Biesbroek, R., Lesnikowski, A. C., Bizikova, L. (2016). Opinion: Big data has big potential for applications to climate change adaptation. Proceedings of the National Academy of Sciences, 113, 10729–10732.
  • Fountoukis, C., Megaritis, A. G., Skyllakou, K., Charalampidis, P. E., Pilinis, C., Denier van der Gon, H. A. C., Pandis, S. N. (2014). Organic aerosol concentration and composition over Europe: Insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 14(17), 9061–9076.
  • Guo, H. (2018). Steps to the digital Silk Road. Nature, 554(7690), 25–27.
  • Guo, H. (2020). Big Earth data facilitates sustainable development goals. Big Earth Data, 4(1), 1–2.
  • Hackmann, H., Moser, S. C., & St, A. L.; Clair. (2014). The social heart of global environmental change. Nature Climate Change, 4(8), 653–655.
  • Hari, P., Andreae, M. O., Kabat, P., & Kulmala, M. (2009). A comprehensive network of measuring stations to monitor climate change, Boreal Environment Research, 14, 442–446.
  • Hari, P., & Kulmala, M. (2005). Station for Measuring Ecosystem–Atmosphere Relations (SMEAR II), Boreal Environment Research, 10, 315–322.
  • Hari, P., Luoma, S., Hämeri, K., Luoma, S., Luoma, S., Aalto, P., Pulliainen, E. (1994). Air pollution in eastern Lapland: Challenge for an environmental measurement station. Silva Fennica, 28(1), 29–39.
  • Hari, P., Petäjä, T., Bäck, J., Kerminen, V.-M., Lappalainen, H. K., Vihma, T., Kulmala, M. (2016). Conceptual design of a measurement network of the global change. Atmospheric Chemistry and Physics, 16, 10171028.
  • Helbig, M., Waddington, J. M., Alekseychik, P., Amiro, B. D., Aurela, M., Barr, A. G., Zyrianov, V. (2020). Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nature Climate Change, 10c(6), 555–560.
  • Huang, X., Zhou, L., Ding, A., Qi, X., Nie, W., Wang, M., Boy, M. (2016). Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China. Atmospheric Chemistry and Physics, 16(4), 2477–2492.
  • Junninen, H., Lauri, A., Keronen, P., Aalto, P., Hiltunen, V., Hari, P., & Kulmala, M. (2009). Smart-SMEAR: On-line data exploration and visualization tool for SMEAR stations. Boreal Environment Research, 14, 447–457.
  • Karttunen, S., Kurppa, M., Auvinen, M., Hellsten, A., & Järvi, L. (2020). Large-eddy simulation of the optimal street-tree layout for pedestrian-level aerosol particle concentrations–A case study from a city-boulevard. Atmospheric Environment: X, 6. doi:https://doi.org/10.1016/j.aeaoa.2020.100073
  • Knox, S. H., Jackson, R. B., Poulter, B., Wohlfahrt G., McNicol G., Fluet-Chouinard E., Zona D. (2019) FLUXNET-CH4 synthesis activity: Objectives, observations, and future directions. Bulletin of the American Meteorological Society, 100, 2607–2632.
  • Kontkanen, J., Lehtipalo, K., Ahonen, L., Kangasluoma, J., Manninen, H. E., Hakala, J., Kulmala, M. (2017). Measurements of sub-3 nm particles using a particle size magnifier in different environments: From clean mountain top to polluted megacities. Atmospheric Chemistry and Physics, 17, 2163–2187.
  • Korrensalo, A., Männistö, E., Alekseychik, P., Mammarella, I., Rinne, J., Vesala, T., & Tuittila, E.-S. (2018). Small spatial variability in methane emission measured from a wet patterned boreal bog. Biogeosciences, 15(6), 1749–1761.
  • Kriegler, E., Luder, G., Bauer, N., Baumstark, L., Fujimori, S., Popp, A., & van Vuuren, D. P. (2018). Pathways limiting warming to 1.5°C. A Tale of Turning around in No Time? Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 376(2119), 2119.
  • Kulmala, M. (2015). China’s Chocking Air Coctail. Nature, 526(7574), 497–499.
  • Kulmala, M. (2018). Build a global Earth observatory. Nature, 553(7686), 21–23.
  • Kulmala, M., Dada, L., Dällenbach, K., Yan, C., Stolzenburg, D., Kontkanen, J., Kerminen, V.-M. (2021). Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities? Faraday Discussions, 226, 334–347.
  • Kulmala, M., Dal Maso, M., Mäkelä, J. M., Pirjola, L., Väkevä, M., Aalto, P., O’Dowd, C. D. (2001). On the formation, growth and composition of nucleation mode particles. Tellus, 53B(4), 479–490.
  • Kulmala, M., Ezhova, E., Kalliokoski, T., Noe, S., Vesala, T., Lohila, A., Kerminen, V.-M. (2020). CarbonSink+Accounting for Multiple Climate Feedbacks from Forests. Boreal Environment Research, 25, 145–159.
  • Kulmala, M., Hari, P., Laaksonen, A., Vesala, T., & Viisanen, Y. (2005). Research Unit of Physics, Chemistry and Biology of Atmospheric Composition and Climate Change: Overview of recent results. Boreal Environment Research, 10, 459–477.
  • Kulmala, M., Kokkonen, T. V., Pekkanen, J., Paatero, S., Petäjä, T., Kerminen, V.-M., & Ding, A. (2021b). Opinion: Gigacity – A source of problems or the new way to sustainable development. Atmospheric Chemistry and Physics, 21(10), 8313–8322. https://doi.org/https://doi.org/10.5194/acp-21-8313-2021
  • Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., … Worsnop, D. R. (2013). Direct Observations of Atmospheric Aerosol Nucleation. Science, 339(6122), 943–946.
  • Kulmala, M., Lappalainen, H. K., Petäjä, T., Kurten, T., Kerminen, V.-M., Viisanen, Y., Zilitinkevich, S. (2015). Introduction: The Pan-Eurasian Experiment (PEEX) – Multidisciplinary, multiscale and multicomponent research and capacity-building initiative. Atmospheric Chemistry and Physics, 15, 13085–13096.
  • Kulmala, M., Nieminen, T., Nikandrova, A., Lehtipalo, K., Manninen, H. E., Kajos, M. K., … Kerminen, V.-M. (2014) CO2-induced terrestrial climate feedback mechanism: From carbon sink to aerosol source and back. Boreal Environment Research, 19, 122–131.
  • Kulmala, M., Petäjä, T., Nieminen, T., Sipila, M., Manninen, H. E., Lehtipalo, K., Kerminen, V.-M. (2012). Measurement of the nucleation of atmospheric aerosol particles. Nature Protocols, 7(9), 1651–1667.
  • Kulmala, M., Suni, T., Lehtinen, K. E. J., Dal Maso, M., Boy, M., Reissell, A., Hari, P. (2004). A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry and Physics, 4(2), 557–562.
  • Kyrö, E.-M., Väänänen, R., Kerminen, V.-M., Virkkula, A., Petäjä, T., Asmi, A., Kulmala, M. (2014). Trends in new particle formation in Eastern Lapland, Finland: Effect of decreasing sulfur emissions from Kola Peninsula. Atmospheric Chemistry and Physics, 14, 4383–4396.
  • Laj, P., Bigi, A., Rose, C., Andrews, E., Lund Myhre, C., Collaud Coen, M., Zikova, N. (2020). A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 13(8), 4353–4392.
  • Lang, D. L., Wiek, A., Bergmann, M., Stauffacher, M., Marten, P., Moll, P., Thomas, S. J. (2012). Transdisciplinary research in sustainability science: Practice, principles, and challenges. Sustainability Science, 7(Supplement 1), 25–43.
  • Lappalainen, H. K., Kerminen, V.-M., Petäjä, T., Kurten, T., Baklanov, A., Shvidenko, A., Kulmala, M. (2016). Pan-Eurasian Experiment (PEEX): Towards a holistic understanding of the feedbacks and interactions in the land–atmosphere–ocean–society continuum in the northern Eurasian region. Atmospheric Chemistry and Physics, 16, 14421–14461.
  • Lappalainen, H. K., Kulmala, M., Kujansuu, J., Petäjä, T., Mahura, A., de Leeuw, G., Guo, H. (2018). The Silk Road agenda of the Pan-Eurasian Experiment (PEEX) program. Big Earth Data, 2(1), 8–35.
  • Lappalainen, H. K., Kulmala, M., Zilitinkevich, Z., Kulmala, M., & Zilitinkevich, S. Copyright © 2015 WEB: www.atm.helsinki.fi/peex, ISBN 978-951-51-0587-5 (printed), ISBN 978-951-51-0588-2 (online)
  • Lappalainen, H. K., Petäjä, T. T., Kujansuu, J. T., Kerminen, V.-M., Shvidenko, A., Bäck, J. K., Kulmala, M. T. (2014). Pan Eurasian Experiment (PEEX) - a Research Initiative Meeting the Grand Challenges of the Changing Environment of the Northern Pan-Eurasian Arctic-Boreal Areas. Geography, Environment and Sustainability, 7(2), 13–48.
  • Lauri, K., Ruuskanen, T., Riuttanen, L., Kulmala, M., & Hari, P. (2020) Research-oriented intensive courses foster multidisciplinary atmospheric science, Global Campus Innovations, Volume I – New Pedagogical Approaches, WMO publications.
  • Law, R. M., Ziehn, T., Matear, R. J., Lenton, A., Chamberlain, M. A., Stevens, L. E., Vohralik, P. F. (2017). The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 1: Model description and pre-industrial simulation. Geoscientific Model Development, 10(7), 2567–2590.
  • Lelieveld, J., Pozzer, A., Pöschl, U., Fnais, M., Haines, A., & Münzel, T. (2020). Loss of life expectancy from air pollution compared to other risk factors: A worldwide perspective. Cardiovascular Research, 116(11), 1910–1917.
  • Lintunen, A., Paljakka, T., Salmon, Y., Dewar, R., Riikonen, A., & Hölttä, T. (2020). The influence of soil temperature and water content on belowground hydraulic conductance and leaf gas exchange in mature trees of three boreal species. Plant, Cell & Environment, 43(3), 532–547.
  • Liu, Y., Yan, C., C., Feng, Z., Zheng, F., Fan, X., Zhang, Y., Bianchi, F. (2020). Continuous and Comprehensive Atmospheric Observations in Beijing: A Station to Understand the Complex Urban Atmospheric Environment. Big Earth Data, 4(3), 295–321.
  • Murray, V., Maini, R., Clarke, L., & Eltinay, N. (2017) Coherence between the Sendai Framework, the SDGs, the Climate Agreement, New Urban Agenda and World Humanitarian Summit, and the role of science in their implementation. https://www.preventionweb.net/publications/view/53049, (accessed 22 March 2021).
  • United Nations (2015) Transforming our world: The 2030 Agenda for Sustainable Development. Division for Sustainable Development Goals, New York, NY, USA. https://sustainabledevelopment.un.org/post2015/transformingourworld/publication, (accessed 22 March 2021).
  • Nieminen, T., Yli-Juuti, T., Manninen, H. E., Petäjä, T., Kerminen, V.-M., & Kulmala, M. (2015). Technical note: New particle formation event forecasts during PEGASOS–Zeppelin Northern mission 2013 in Hyytiälä, Finland. Atmospheric Chemistry and Physics, 15, 12385–12396.
  • Papale, D., Antoniella, G., Nicolini, G., Gioli, B., Zaldei, A., Vogt, R., Masson, V. (2020) Clear evidence of reduction in urban CO2emissions as a result of COVID-19 lockdown across Europe, ICOS Report. https://www.icos-cp.eu/event/933
  • Petäjä, T., Ganzei, K. S., Lappalainen, H. K., Tabakova, K., Makkonen, R., Räisänen, J., Kondrat’ev, I. I. (2021). Research agenda for the Russian Far East and utilization of multi-platform comprehensive environmental observations. International Journal of Digital Earth, 14(3), 311–337.
  • Petäjä, T., O’Connor, E., Moisseev, D., Sinclair, V., Manninen, A., Väänänen, R., … Hickmon, N. (2016) BAECC: A Field Campaign to Elucidate the Impact of Biogenic Aerosols on Clouds and Climate. Bulletin of the American Meteorological Society, 97, 1909–1928.
  • Prime Minister’s Office Finland (2020) Voluntary National Review 2020 Finland – Report on the Implementation of the 2030 Agenda for Sustainable development. Helsinki, Finland. https://julkaisut.valtioneuvosto.fi/handle/10024/162268, (accessed 22 March 2021).
  • Qi, X. M., Ding, A. J., Roldin, P., Xu, Z. N., Zhou, P. T., Sarnela, N., … Boy, M. (2018). Modelling studies of HOM and its contributions to growth of new particles: Comparison of boreal forest in Finland and polluted environment in China. Atmospheric Chemistry and Physics, 18, 11779–11791.
  • Raivonen, M., Smolander, S., Backman, L., Susiluoto, J., Aalto, T., Markkanen, T., … Vesala, T. (2017). HIMMELI v1.0: HelsinkI Model of MEthane buiLd-up and emIssion for peatlands. Geoscientific Model Development, 10(12), 4665–4691.
  • Rantala, P., Järvi, L., Taipale, R., Laurila, T. K., Patokoski, J., Kajos, M. K., Rinne, J. (2016). Anthropogenic and biogenic influence on VOC fluxes at an urban background site in Helsinki, Finland. Atmospheric Chemistry and Physics, 16, 7981–8007.
  • Rinne, J., Tuittila, E. ‐. S., Peltola, O., Li, X., Raivonen, M., Alekseychik, P., Vesala, T. (2018). Temporal variation of ecosystem scale methane emission from a boreal fen in relation to temperature, water table position, and carbon dioxide fluxes. Global Biogeochemical Cycles, 32, 1087–1106.
  • Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D. P., Quaas, J. (2014). Global observations of aerosol-cloud-precipitation-climate interactions. Reviews of Geophysics, 52, 750–808.
  • Scharlemann, J. P. W., Brock, R. C., Balfour, N., Brown, C., Burgess, N. D., Guth, M. K., Kapos, V. (2020). Towards understanding interactions between Sustainable Development Goals: The role of environment–human linkages. Sustainability Science, 15(6), 1573–1584.
  • Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R., & Kapos, V. (2014). Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1), 81–91.
  • Solomeshch, A., The West Siberian Lowland (2005) In L. Fraser & P. Keddy (Eds.), The World’s Largest Wetlands: Ecology and Conservation, 11-62. Cambridge: Cambridge University Press. doi:https://doi.org/10.1017/CBO9780511542091.003
  • Syväsalo, E., Regina, K., Pihlatie, M., & Esala, M. (2004). Emissions of nitrous oxide from boreal agricultural clay and loamy sand soils. Nutrient Cycling in Agroecosystems, 69(2), 155–165.
  • UN Habitat (2019). UN Habitat Strategic Plan 2020-2023, 7, 2019. https://unhabitat.org/sites/default/files/documents/2019-09/strategic_plan_2020-2023.pdf
  • UNEP (2016) The Adaptation Finance Gap Report 2016. Author, Nairobi, Kenya.
  • United Nations (2019) Independent Group of Scientists appointed by the Secretary-General, Global Sustainable Development Report 2019: The Future is Now – Science for Achieving Sustainable Development, Author, New York.
  • Vihma, T., Uotila, P., Sandven, S., Pozdnyakov, D., Makshtas, A., Pelyasov, A., Kulmala, M. (2019). Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX). Atmospheric Chemistry and Physics, 19, 1941–1970.
  • Wang, Y., Yu, M., Wang, Y., Tang, G., Song, T., Zhou, P., Petäjä, T. (2020). Rapid formation of intense haze episodes via aerosol–boundary layer feedback in Beijing. Atmospheric Chemistry and Physics, 20, 45–53.
  • Williams, J., Crowley, J., Fischer, H., Harder, H., Martinez, M., Petäjä, T., … Lelieveld, J. (2011). The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): An overview of meteorological and chemical influences. Atmospheric Chemistry and Physics, 11(20), 10599–10618.
  • Yan, C., Yin, R., Lu, Y., Dada, L., Yang, D., Fu, Y., … Bianchi, F. (2021). The synergistic role of sulfuric acid, bases, and oxidized organics governing new-particle formation in Beijing. Geophysical Research Letters, 48, e2020GL091944. doi:https://doi.org/10.1029/2020GL091944
  • Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., … Wang, L. (2018). Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 361(6399), 278–281.
  • Zenkovich V.P., Arctic USSR. (1985). In: Bird ECF, Schwartz ML (eds) The World’s Coastline. In Van Nostrand Reinhold, Stroudsburg, PA. 863–872.
  • Zhou Y., L. Dada, Y. Liu, B. Chu, K.R. Daellenbach, F. Bianchi, M. Kulmala. (2020). Variation of size-segregated particle number concentrations in wintertime Beijing. Atmospheric Chemistry and Physics, 20, 1201–1216. doi:https://doi.org/10.5194/acp-20-1201-2020.