8,382
Views
16
CrossRef citations to date
0
Altmetric
General articles

Deep learning for processing and analysis of remote sensing big data: a technical review

ORCID Icon, ORCID Icon &
Pages 527-560 | Received 02 Jun 2021, Accepted 28 Jul 2021, Published online: 30 Aug 2021

References

  • Abdollahi, A., Pradhan, B., Shukla, N., Chakraborty, S., & Alamri, A. (2020). Deep learning approaches applied to remote sensing datasets for road extraction: A state-of-the-art review. Remote Sensing, 12(9), 1444.
  • Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346–359.
  • Benzenati, T., Kallel, A., & Kessentini, Y. (2020). Two stages pan-sharpening details injection approach based on very deep residual networks. IEEE Transactions on Geoscience and Remote Sensing, 59(6), 4984–4992.
  • Bermudez, J. D., Happ, P. N., Feitosa, R. Q., & Oliveira, D. A. B. (2019). Synthesis of multispectral optical images from SAR/optical multitemporal data using conditional generative adversarial networks. IEEE Geoscience and Remote Sensing Letters, 16(8), 1220–1224.
  • Brandt, M., Tucker, C. J., Kariryaa, A., Rasmussen, K., Abel, C., Small, J., … Fensholt, R. (2020). An unexpectedly large count of trees in the West African Sahara and Sahel. Nature, 587(7832), 78–82.
  • Cao, R., Tu, W., Yang, C., Li, Q., Liu, J., Zhu, J., … Qiu, G. (2020). Deep learning-based remote and social sensing data fusion for urban region function recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 163, 82–97.
  • Censi, A. M., Ienco, D., Gbodjo, Y. J. E., Pensa, R. G., Interdonato, R., & Gaetano, R. (2021). Attentive spatial temporal graph CNN for land cover mapping from multi temporal remote sensing data. IEEE Access, 9, 23070–23082.
  • Chen, X., Xiang, S., Liu, C. L., & Pan, C.-H. (2014). Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geoscience and Remote Sensing Letters, 11(10), 1797–1801.
  • Chen, Y., Fan, R., Yang, X., Wang, J., & Latif, A. (2018). Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning. Water, 10(5), 585.
  • Chen, Z., Zhang, T., & Ouyang, C. (2018). End-to-end airplane detection using transfer learning in remote sensing images. Remote Sensing, 10(1), 139.
  • Cheng, G., Han, J., Zhou, P., & Xu, D. (2019). Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection. IEEE Transactions on Image Processing, 28(1), 265–278.
  • Cheng, G., Zhou, P., & Han, J. (2016). Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 54(12), 7405–7415.
  • Chung, J., Gulcehre, C., Cho, K. H. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
  • Cui, W., He, X., Yao, M., Wang, Z., Hao, Y., Li, J., … Cui, W. (2021). Knowledge and spatial pyramid distance-based gated graph attention network for remote sensing semantic segmentation. Remote Sensing, 13(7), 1312.
  • Dadsetan, S., Pichler, D., Wilson, D., Hovakimyan. N., & Hobbs. J. (2021). Superpixels and graph convolutional neural networks for efficient detection of nutrient deficiency stress from aerial imagery. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 2950–2959.
  • Das, M., & Ghosh, S. K. (2016). Deep-STEP: A deep learning approach for spatiotemporal prediction of remote sensing data. IEEE Geoscience and Remote Sensing Letters, 13(12), 1984–1988.
  • Deng, Z., Sun, H., Zhou, S., Zhao, J., Lei, L., & Zou, H. (2018). Multi-scale object detection in remote sensing imagery with convolutional neural networks. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 3–22.
  • Ding, J., Xue, N., Long, Y., Xia, G., & Lu, Q. (2018). Learning roi transformer for detecting oriented objects in aerial images. arXiv preprint arXiv:1812.00155.
  • Dong, G., Liao, G., Liu, H., & Kuang, G. (2018). A review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images. IEEE Geoscience and Remote Sensing Magazine, 6(3), 44–68.
  • Du, B., Ru, L., Wu, C., & Zhang, L. (2019). Unsupervised deep slow feature analysis for change detection in multi-temporal remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 57(12), 9976–9992.
  • Duan, W., Chiang, Y. Y., Leyk, S., Uhl, J. H., & Knoblock, C. A. (2020). Automatic alignment of contemporary vector data and georeferenced historical maps using reinforcement learning. International Journal of Geographical Information Science, 34(4), 824–849.
  • Duffy, K. M., Vandal, T., Li, S., Ganguly, S., Nemani, R., & Ganguly, A. R. (2019). DeepEmSat: Deep emulation for satellite data mining. Frontiers in Big Data, 2, 42.
  • Feng, J., Wu, X., Chen, J., Zhang, X., Tang, X., & Li, D. (2019). Joint multilayer spatial-spectral classification of hyperspectral images based on CNN and ConvLSTM. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019a: 588–591.
  • Feng, Q., Yang, J., Liu, Y., Ou, C., Zhu, D., Niu, B., … Li, B. (2020). Multi-temporal unmanned aerial vehicle remote sensing for vegetable mapping using an attention-based recurrent convolutional neural network. Remote Sensing, 12(10), 1668.
  • Feng, Q., Zhu, D., Yang, J., & Li, B. (2019b). Multisource hyperspectral and lidar data fusion for urban land-use mapping based on a modified two-branch convolutional neural network. ISPRS International Journal of Geo-Information, 8(1), 28.
  • Feng, W., Sui, H., Huang, W., Xu, C., & An, K. (2018). Water body extraction from very high-resolution remote sensing imagery using deep U-Net and a superpixel-based conditional random field model. IEEE Geoscience and Remote Sensing Letters, 16(4), 618–622.
  • Fu, T., Ma, L., Li, M., & Johnson, B. A. (2018). Using convolutional neural network to identify irregular segmentation objects from very high-resolution remote sensing imagery. Journal of Applied Remote Sensing, 12(2), 025010.
  • Galar, M., Sesma, R., Ayala, C., Albizua, L., & Aranda, C. (2020). Super-resolution of Sentinel-2 images using convolutional neural networks and real ground truth data. Remote Sensing, 12(18), 2941.
  • Gao, F., Dong, J., Li, B., & Xu, Q. (2016). Automatic change detection in synthetic aperture radar images based on PCANet. IEEE Geoscience and Remote Sensing Letters, 13(12), 1792–1796.
  • Gao, X., Sun, X., Zhang, Y., Yan, M., Xu, G., Sun, H., … Fu, K. (2018). An end-to-end neural network for road extraction from remote sensing imagery by multiple feature pyramid network. IEEE Access, 6, 39401–39414.
  • Gao, Y., Shi, J., & Wang, R., (2021). Remote sensing scene classification based on high-order graph convolutional network. European Journal of Remote Sensing, 141–155.
  • Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2002). Learning precise timing with LSTM recurrent networks. Journal of Machine Learning Research, 3(Aug), 115–143.
  • Girard, N., Charpiat, G., & Tarabalka, Y. Aligning and updating cadaster maps with aerial images by multi-task, multi-resolution deep learning. Asian Conference on Computer Vision. Springer, Cham, 2018: 675–690.
  • Gong, M., Yang, H., & Zhang, P. (2017). Feature learning and change feature classification based on deep learning for ternary change detection in SAR images. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 212–225.
  • Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems, 2672–2680.
  • Graves, A., Mohamed, A., & Hinton, G. Speech recognition with deep recurrent neural networks. (2013). IEEE international conference on acoustics, speech and signal processing. IEEE, 2013: 6645–6649.Vancouver, Canada.
  • Grohnfeldt, C., Schmitt, M., & Zhu, X. A conditional generative adversarial network to fuse sar and multispectral optical data for cloud removal from Sentinel-2 images. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018: 1726–1729.Valencia, Spain.
  • Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2020). A review on generative adversarial networks: Algorithms, theory, and applications. arXiv preprint arXiv:2001.06937.
  • Guirado, E., Tabik, S., Rivas, M. L., Alcaraz-Segura, D., & Herrera, F. (2019). Whale counting in satellite and aerial images with deep learning. Scientific Reports, 9(1), 1–12.
  • Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33: 922–929.
  • Halefom, A., Teshome, A., Sisay, E., & Ahmad, I. (2018). Dynamics of land use and land cover change using remote sensing and GIS: A case study of Debre Tabor Town, South Gondar, Ethiopia. Journal of Geographic Information System, 10(2), 165.
  • Haut, J. M., Fernandez-Beltran, R., Paoletti, M. E., Plaza, J., Plaza, A., & Pla, F. (2018). A new deep generative network for unsupervised remote sensing single-image super-resolution. IEEE Transactions on Geoscience and Remote Sensing, 56(11), 6792–6810.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770–778.
  • He, W., & Yokoya, N. (2018). Multi-temporal sentinel-1 and-2 data fusion for optical image simulation. ISPRS International Journal of Geo-Information, 7(10), 389.
  • Hewage, P., Behera, A., Trovati, M., Pereira, E., Ghahremani, M., Palmieri, F., & Liu, Y. (2020). Temporal convolutional neural (TCN) network for an effective weather forecasting using time-series data from the local weather station. Soft Computing, 1–30.
  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.
  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
  • Hou, X., Wang, B., Hu, W., Yin, L., & Wu, H. (2019). SolarNet: A deep learning framework to map solar power plants in China from satellite imagery. arXiv preprint arXiv:1912.03685.
  • Hu, W., Li, H., Pan, L., Li, W., Tao, R., & Du, Q. (2019a). Feature extraction and classification based on spatial-spectral convlstm neural network for hyperspectral images. arXiv preprint arXiv:1905.03577.
  • Hu, W. S., Li, H. C., Pan, L., Li, W., Tao, R., & Du, Q. (2020). Spatial–spectral feature extraction via deep ConvLSTM neural networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58(6), 4237–4250.
  • Hu, Y., Li, X., Zhou, N., Yang, L., & Peng, L. (2019b). A sample update-based convolutional neural network framework for object detection in large-area remote sensing images. IEEE Geoscience and Remote Sensing Letters, 16(6), 947–951.
  • Huang, B., Zhao, B., & Song, Y. (2018). Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sensing of Environment, 214, 73–86.
  • Huang, J., Zhang, X., Xin, Q., Sun, Y., & Zhang, P. (2019). Automatic building extraction from high-resolution aerial images and LiDAR data using gated residual refinement network. ISPRS Journal of Photogrammetry and Remote Sensing, 151, 91–105.
  • Huang, W., Xiao, L., Wei, Z., Liu, H., & Tang, S. (2015). A new pan-sharpening method with deep neural networks. IEEE Geoscience and Remote Sensing Letters, 12(5), 1037–1041.
  • Hughes, L. H., Schmitt, M., & Zhu, X. X. (2018). Mining hard negative samples for SAR-optical image matching using generative adversarial networks. Remote Sensing, 10(10), 1552.
  • Hui, J., Du, M., Ye, X., Qin, Q., & Sui, J. (2018). Effective building extraction from high-resolution remote sensing images with multitask driven deep neural network. IEEE Geoscience and Remote Sensing Letters, 16(5), 786–790.
  • Isikdogan, F., Bovik, A. C., & Passalacqua, P. (2017). Surface water mapping by deep learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(11), 4909–4918.
  • Jeppesen, J. H., Jacobsen, R. H., Inceoglu, F., & Toftegaard, T. S. (2019). A cloud detection algorithm for satellite imagery based on deep learning. Remote Sensing of Environment, 229, 247–259.
  • Ji, S., Wei, S., & Lu, M. (2018). Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 574–586.
  • Ji, S., Wei, S., & Lu, M. (2019). A scale robust convolutional neural network for automatic building extraction from aerial and satellite imagery. International Journal of Remote Sensing, 40(9), 3308–3322.
  • Jia, D., Song, C., Cheng, C., Shen, S., Ning, L., & Hui, C. (2020). A novel deep learning-based spatiotemporal fusion method for combining satellite images with different resolutions using a two-stream convolutional neural network. Remote Sensing, 12(4), 698.
  • Jiang, K., Wang, Z., Yi, P., Wang, G., Lu, T., & Jiang, J. (2019). Edge-enhanced GAN for remote sensing image superresolution. IEEE Transactions on Geoscience and Remote Sensing, 57(8), 5799–5812.
  • Khan, N., Chaudhuri, U., Banerjee, B., & Chaudhuri, S. (2019). Graph convolutional network for multi-label VHR remote sensing scene recognition. Neurocomputing, 357, 36–46.
  • Kipf, T. N., & Welling, M. (2016a). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
  • Kipf, T. N., & Welling, M. (2016b). Variational graph auto-encoders. arXiv preprint arXiv:1611.07308.
  • Lea, C., Vidal, R., Reiter, A., & Hager, G. D. (2016). Temporal convolutional networks: A unified approach to action segmentation. European Conference on Computer Vision. Springer, Cham, 2016: 47–54.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
  • Lei, S., Shi, Z., & Zou, Z. (2017). Super-resolution for remote sensing images via local–global combined network. IEEE Geoscience and Remote Sensing Letters, 14(8), 1243–1247.
  • Li, J., Li, Y., He, L., Chen, J., & Plaza, A.  (2020a). Spatio-temporal fusion for remote sensing data: An overview and new benchmark. Information Sciences, 63(140301), 1–140301.
  • Li, K., Cheng, G., Bu, S., & You, X. (2018). Rotation-insensitive and context-augmented object detection in remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 56(4), 2337–2348.
  • Li, K., Wan, G., Cheng, G., Meng, L., & Han, J. (2020b). Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 296–307.
  • Li, L., Yan, Z., Shen, Q., Cheng, G., Gao, L., & Zhang, B. (2019a). Water body extraction from very high spatial resolution remote sensing data based on fully convolutional networks. Remote Sensing, 11(10), 1162.
  • Li, M., Zhang, Z., Lei, L., Wang, X., & Guo, X. (2020c). Agricultural greenhouses detection in high-resolution satellite images based on convolutional neural networks: Comparison of faster R-CNN, YOLO v3 and SSD. Sensors, 20(17), 4938.
  • Li, X., Lei, L., Sun, Y., Li, M., & Kuang, G. (2020d). Multimodal bilinear fusion network with second-order attention-based channel selection for land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1011–1026.
  • Li, X., Yao, X., & Fang, Y. (2018a). Building-a-nets: Robust building extraction from high-resolution remote sensing images with adversarial networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(10), 3680–3687.
  • Li, Y., Chen, W., Zhang, Y., Tao, C., Xiao, R., & Tan, Y. (2020e). Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning. Remote Sensing of Environment, 250, 112045.
  • Li, Y., Peng, C., Chen, Y., Jiao, L., Zhou, L., & Shang, R. (2019b). A deep learning method for change detection in synthetic aperture radar images. IEEE Transactions on Geoscience and Remote Sensing, 57(8), 5751–5763.
  • Li, Y., Zhang, H., Xue, Y., Jiang, Y., & Shen, Q. (2018b). Deep learning for remote sensing image classification: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(6), e1264.
  • Li, Y., Zhang, Y., Huang, X., & Yuille, A. L. (2018c). Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 182–196.
  • Liang, J., Deng, Y., & Zeng, D. (2020). A deep neural network combined CNN and GCN for remote sensing scene classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4325–4338.
  • Liu, H., Luo, J., Huang, B., Hu, X., Sun, Y., Yang, Y., Xu, N., & Zhou, N. (2019a). DE-Net: Deep encoding network for building extraction from high-resolution remote sensing imagery. Remote Sensing, 11(20), 2380.
  • Liu, H., & Weng, Q. (2018a). Scaling effect of fused ASTER-MODIS land surface temperature in an urban environment. Sensors, 18(11), 4058.
  • Liu, J., Gong, M., Qin, K., & Zhang, P.  (2016a). A deep convolutional coupling network for change detection based on heterogeneous optical and radar images. IEEE Transactions on Neural Networks and Learning Systems, 29(3), 545–559.
  • Liu, L., Wang, J., Zhang, E., Li, B., Zhu, X., Zhang, Y., & Peng, J. (2020a). Shallow–deep convolutional network and spectral-discrimination-based detail injection for multispectral imagery pan-sharpening. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1772–1783.
  • Liu, P. (2015). A survey of remote-sensing big data. Frontiers in Environmental Science, 3, 45.
  • Liu, P., Liu, X., Liu, M., Shi, Q., Yang, J., Xu, X., & Zhang, Y. (2019b). Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network. Remote Sensing, 11(7), 830.
  • Liu, Q., Kampffmeyer, M., Jenssen, R., & Salberg, A.  (2020b). SCG-Net: Self-constructing graph neural networks for semantic segmentation. arXiv preprint arXiv:2009.01599.
  • Liu, Q., Xu, L., & Zhang, Z. The downscaling of the SMOS global sea surface salinity product based on MODIS data using a deep convolution network approach. Proceedings of the 2019 3rd International Conference on Advances in Image Processing. 2019c: 97–100.Chengdu, China.
  • Liu, R., Jiang, D., Zhang, L., & Zhang, Z. (2020c). Deep depthwise separable convolutional network for change detection in optical aerial images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1109–1118.
  • Liu, W., Wang, J., Luo, J., Wu, Z., Chen, J., Zhou, Y., … Yang, Y. (2020d). Farmland parcel mapping in mountain areas using time-series SAR data and VHR optical images. Remote Sensing, 12(22), 3733.
  • Liu, X., Deng, C., Chanussot, J., Hong, D., & Zhao, B. (2019d). StfNet: A two-stream convolutional neural network for spatiotemporal image fusion. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6552–6564.
  • Liu, Y., Chen, X., Wang, Z., Wang, Z. J., Ward, R. K., & Wang, X. (2018b). Deep learning for pixel-level image fusion: Recent advances and future prospects. Information Fusion, 42, 158–173.
  • Liu, Y., Gross, L., Li, Z., Li, X., Fan, X., & Qi, W. (2019e). Automatic building extraction on high-resolution remote sensing imagery using deep convolutional encoder-decoder with spatial pyramid pooling. IEEE Access, 7, 128774–128786.
  • Liu, Y., Yao, J., Lu, X., Xia, M., Wang, X., & Liu, Y. (2018c). Roadnet: Learning to comprehensively analyze road networks in complex urban scenes from high-resolution remotely sensed images. IEEE Transactions on Geoscience and Remote Sensing, 57(4), 2043–2056.
  • Liu, Z., Wang, H., Weng, L., & Yang, Y. (2016b). Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. IEEE Geoscience and Remote Sensing Letters, 13(8), 1074–1078.
  • Long, Y., Gong, Y., Xiao, Z., & Liu, Q. (2017). Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 55(5), 2486–2498.
  • López-Serrano, P. M., López-Sánchez, C. A., Álvarez-González, J. G., & García-Gutiérrez, J. (2016). A comparison of machine learning techniques applied to landsat-5 TM spectral data for biomass estimation. Canadian Journal of Remote Sensing, 42(6), 690–705.
  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.
  • Lu, X., Zhong, Y., Zheng, Z., Liu, Y., Zhao, J., Ma, A., & Yang, J. (2019). Multi-scale and multi-task deep learning framework for automatic road extraction. IEEE Transactions on Geoscience and Remote Sensing, 57(11), 9362–9377.
  • Lv, X., Ming, D., Lu, T., Zhou, K., Wang, M., & Bao, H. (2018). A new method for region-based majority voting CNNs for very high resolution image classification. Remote Sensing, 10(12), 1946.
  • Lyu, H., Lu, H., & Mou, L. (2016). Learning a transferable change rule from a recurrent neural network for land cover change detection. Remote Sensing, 8(6), 506.
  • Ma, J., Yu, W., Chen, C., Liang, P., Guo, X., & Jiang, J. (2020). Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion. Information Fusion, 62, 110–120.
  • Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019a). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177.
  • Ma, W., Pan, Z., Guo, J., & Lei, B. (2019b). Achieving super-resolution remote sensing images via the wavelet transform combined with the recursive res-net. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3512–3527.
  • Ma, W., Zhang, J., Wu, Y., Jiao, L., Zhu, H., & Zhao, W. (2019c). A novel two-step registration method for remote sensing images based on deep and local features. IEEE Transactions on Geoscience and Remote Sensing, 57(7), 4834–4843.
  • Maltezos, E., Doulamis, N., Doulamis, A., & Ioannidis, C. (2017). Deep convolutional neural networks for building extraction from orthoimages and dense image matching point clouds. Journal of Applied Remote Sensing, 11(4), 042620.
  • Marmanis, D., Schindler, K., Wegner, J. D., Galliani, S., Datcu, M., & Stilla, U. (2018). Classification with an edge: Improving semantic image segmentation with boundary detection. ISPRS Journal of Photogrammetry and Remote Sensing, 135, 158–172.
  • Masi, G., Cozzolino, D., Verdoliva, L., & Scarpa, G. (2016). Pansharpening by convolutional neural networks. Remote Sensing, 8(7), 594.
  • Mateo-García, G., Laparra, V., López-Puigdollers, D., & Gómez-Chova, L. (2020). Transferring deep learning models for cloud detection between Landsat-8 and Proba-V. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 1–17.
  • Merkle, N., Auer, S., Müller, R., & Reinartz, P. (2018). Exploring the potential of conditional adversarial networks for optical and SAR image matching. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(6), 1811–1820.
  • Mou, L., Bruzzone, L., & Zhu, X. X. (2018). Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 57(2), 924–935.
  • Mou, L., Lu, X., Li, X., & Zhu, X. X. (2020). Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58(12), 8246–8257.
  • Ogut, M., Bosch-Lluis, X., & Reising, S. C. (2019). Deep learning calibration of the high-frequency airborne microwave and millimeter-wave radiometer (HAMMR) instrument. IEEE Transactions on Geoscience and Remote Sensing, 58(5), 3391–3399.
  • Ouyang, S., & Li, Y. (2021). Combining deep semantic segmentation network and graph convolutional neural network for semantic segmentation of remote sensing imagery. Remote Sensing, 13(1), 119.
  • Pan, X., Zhao, J., & Xu, J. (2020). An end-to-end and localized post-processing method for correcting high-resolution remote sensing classification result images. Remote Sensing, 12(5), 852.
  • Peng, D., Zhang, Y., & Guan, H. (2019). End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sensing, 11(11), 1382.
  • Peng, H., Wang, H., Du, B., Bhuiyan, M. Z. A., Ma, H., Liu, J., & Yu, P. S. (2020). Spatial temporal incidence dynamic graph neural networks for traffic flow forecasting. Information Sciences, 521, 277–290.
  • Peng, J., Wang, D., Liao, X., Shao, Q., Sun, Z., Yue, H., & Ye, H. (2020). Wild animal survey using UAS imagery and deep learning: Modified Faster R-CNN for kiang detection in Tibetan Plateau. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 364–376.
  • Qin, A., Shang, Z., Tian, J., Wang, Y., Zhang, T., & Tang, Y. Y. (2018). Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 16(2), 241–245.
  • Qiu, S., Zhu, Z., & He, B. (2019). Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sensing of Environment, 231, 111205.
  • Rahman, M. S., & Di, L. (2017). The state of the art of spaceborne remote sensing in flood management. Natural Hazards, 85(2), 1223–1248.
  • Ren, Y., Zhu, C., & Xiao, S. (2018). Small object detection in optical remote sensing images via modified faster R-CNN. Applied Sciences, 8(5), 813.
  • Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. 2011 International conference on computer vision. IEEE, 2011: 2564–2571.
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representations by error propagation[R]. California Univ San Diego La Jolla Inst for Cognitive Science.La Jolla, CA, USA.
  • Saha, S., Mou, L., Zhu, X., & Bovolo, F. (2020). Semisupervised change detection using graph convolutional network. IEEE Geoscience and Remote Sensing Letters. doi:10.1109/LGRS.2020.2985340
  • Scarpa, G., Gargiulo, M., Mazza, A., & Gaetano, R. (2018). A cnn-based fusion method for feature extraction from sentinel data. Remote Sensing, 10(2), 236.
  • Seo, D. K., Kim, Y. H., Eo, Y. D., Park, W., & Park, H. (2017). Generation of radiometric, phenological normalized image based on random forest regression for change detection. Remote Sensing, 9(11), 1163.
  • Shao, Z., Cai, J., Fu, P., Hu, L., & Liu, T. (2019). Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product. Remote Sensing of Environment, 235, 111425.
  • Shao, Z., Deng, J., Wang, L., Fan, Y., Sumari, N., & Cheng, Q. (2017). Fuzzy autoencode based cloud detection for remote sensing imagery. Remote Sensing, 9(4), 311.
  • Sharma, A., Liu, X., Yang, X., & Shi, D. (2017). A patch-based convolutional neural network for remote sensing image classification. Neural Networks, 95, 19–28.
  • Shen, H., Zhou, M., Li, T., & Zeng, C. (2019). Integration of remote sensing and social sensing data in a deep learning framework for Hourly Urban PM2. 5 mapping. International Journal of Environmental Research and Public Health, 16(21), 4102.
  • Shi, M., Xie, F., Zi, Y., & Yin, J. (2016). Cloud detection of remote sensing images by deep learning. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016: 701–704.
  • Shi, X., Chen, Z., Wang, H., & Yeung D. (2015). Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Advances in Neural Information Processing Systems, 28, 802–810.
  • Shi, Y., Li, Q., & Zhu, X. X. (2020). Building segmentation through a gated graph convolutional neural network with deep structured feature embedding. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 184–197.
  • Song, H., Liu, Q., Wang, G., Hang, R., & Huang, B. (2018). Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(3), 821–829.
  • Song, S., Liu, J., Liu, Y., Feng, G., Han, H., Yao, Y., & Du, M. (2020). Intelligent object recognition of urban water bodies based on deep learning for multi-source and multi-temporal high spatial resolution remote sensing imagery. Sensors, 20(2), 397.
  • Sun, L., Mi, X., Wei, J., Wang, J., Tian, X., Yu, H., & Gan, P. (2017). A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 70–88.
  • Sun, Z., Di, L., & Fang, H. (2019). Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series. International Journal of Remote Sensing, 40(2), 593–614.
  • Tan, Z., Yue, P., Di, L., & Tang, J. (2018). Deriving high spatiotemporal remote sensing images using deep convolutional network. Remote Sensing, 10(7), 1066.
  • Teimouri, N., Dyrmann, M., & Jørgensen, R. N. (2019). A novel spatio-temporal FCN-LSTM network for recognizing various crop types using multi-temporal radar images. Remote Sensing, 11(8), 990.
  • Timilsina, S., Aryal, J., & Kirkpatrick, J. B. (2020). Mapping urban tree cover changes using object-based convolution neural network (OB-CNN). Remote Sensing, 12(18), 3017.
  • Tong, X., Xia, G., Lu, Q., Shen, H.,  Li, S., You, S., & Zhang, L. (2018). Learning transferable deep models for land-use classification with high-resolution remote sensing images. arXiv preprint arXiv:1807.05713.
  • Tong, X. Y., Xia, G. S., Lu, Q., Shen, H., Li, S., You, S., & Zhang, L. (2020). Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sensing of Environment, 237, 111322.
  • Tuna, C., Unal, G., & Sertel, E. (2018). Single-frame super resolution of remote-sensing images by convolutional neural networks. International Journal of Remote Sensing, 39(8), 2463–2479.
  • Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., &Bengio, Y.  (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
  • Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A brief review. Computational Intelligence and Neuroscience, 2018, 1–13.
  • Waldner, F., & Diakogiannis, F. I. (2020). Deep learning on edge: Extracting field boundaries from satellite images with a convolutional neural network. Remote Sensing of Environment, 245, 111741.
  • Wan, S., Gong, C., Zhong, P., Du, B., Zhang L., & Yang, J. (2019). Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58(5), 3162–3177.
  • Wan, S., Gong, C., Zhong, P., Du, B., Zhang, L., & Yang, J. (2020). Multiscale dynamic graph convolutional network for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 58(5), 3162–3177.
  • Wang, C., Bai, X., Wang, S., Zhou, J., & Ren, P. (2018a). Multiscale visual attention networks for object detection in VHR remote sensing images. IEEE Geoscience and Remote Sensing Letters, 16(2), 310–314.
  • Wang, J., Zhang, J., Guo, Q., & Li, T. (2019). Fusion of hyperspectral and lidar data based on dual-branch convolutional neural network. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019a: 3388–3391.
  • Wang, Q., Yuan, Z., Du, Q., & Li, X.  (2018b). GETNET: A general end-to-end 2-D CNN framework for hyperspectral image change detection. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 3–13.
  • Wang, Q., Zhang, X., Chen, G., Dai, F., Gong, Y., & Zhu, K. (2018c). Change detection based on faster R-CNN for high-resolution remote sensing images. Remote Sensing Letters, 9(10), 923–932.
  • Wang, S., Quan, D., Liang, X., Ning, M., Guo, Y., & Jiao, L. (2018d). A deep learning framework for remote sensing image registration. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 148–164.
  • Wang, T., Li, Y., Yu, S., & Liu, Y. (2019b). Estimating the volume of oil tanks based on high-resolution remote sensing images. Remote Sensing, 11(7), 793.
  • Wang, W., Li, H., Deng, Y., Shao, L., Lu, X., & Du, Q. (2020). Generative adversarial capsule network with ConvLSTM for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters.
  • Wang, W., Ma, L., Chen, M., & Du, Q. (2021). Joint correlation alignment-based graph neural network for domain adaptation of multitemporal hyperspectral remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3170–3184.
  • Wang, W., & Shen, J. (2017). Deep visual attention prediction. IEEE Transactions on Image Processing, 27(5), 2368–2378.
  • Wei, Y., Yuan, Q., Shen, H., & Zhang, L. (2017). Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geoscience and Remote Sensing Letters, 14(10), 1795–1799.
  • Wen, C., Li, X., Yao, X., Peng, L., & Chi, T. (2021). Airborne LiDAR point cloud classification with global-local graph attention convolution neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 181–194.
  • Widyaningrum, E., Bai, Q., Fajari, M. K., & Lindenbergh, R. C. (2021). Airborne laser scanning point cloud classification using the DGCNN deep learning method. Remote Sensing, 13(5), 859.
  • Wu, W., Gao, X., Fan, J., Xia, L., Luo, J., & Zhou, Y. (2020a). Improved mask R-CNN-based cloud masking method for remote sensing images. International Journal of Remote Sensing, 41(23), 8910–8933.
  • Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P.S. (2020b). A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems 32(1): 4–24.
  • Xia, G., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo J., Datcu, M., Pelillo, M., & Zhang, L. (2018). DOTA: A large-scale dataset for object detection in aerial images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3974–3983.
  • Xie, F., Shi, M., Shi, Z., Yin, J., & Zhao, D. (2017). Multilevel cloud detection in remote sensing images based on deep learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8), 3631–3640.
  • Xing, Y., Wang, M., Yang, S., & Jiao, L. (2018). Pan-sharpening via deep metric learning. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 165–183.
  • Xu, F., Cervone, G., Franch, G., & Salvador, M. (2020). Multiple geometry atmospheric correction for image spectroscopy using deep learning. Journal of Applied Remote Sensing, 14(2), 024518.
  • Xu, Q., Hou, Z., & Tokola, T. (2012). Relative radiometric correction of multi-temporal ALOS AVNIR-2 data for the estimation of forest attributes. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 69–78.
  • Yan, J., Chen, X., Chen, Y., & Liang, D. (2020a). Multistep prediction of land cover from dense time series remote sensing images with temporal convolutional networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5149–5161.
  • Yan, J., Mu, L., Wang, L., Ranjan, R., & Zomaya, A. Y. (2020b). temporal convolutional networks for the advance prediction of ENSO. Scientific Reports, 10(1), 1–15.
  • Yan, J., Wang, H., Yan, M., Diao, W., Sun, X., & Li, H. (2019). IoU-adaptive deformable R-CNN: Make full use of IoU for multi-class object detection in remote sensing imagery. Remote Sensing, 11(3), 286.
  • Yang, H., Wu, P., Yao, X., Wu, Y., Wang, B., & Xu, Y. (2018b). Building extraction in very high resolution imagery by dense-attention networks. Remote Sensing, 10(11), 1768.
  • Yang, H., Yu, B., Luo, J., & Chen, F. (2019). Semantic segmentation of high spatial resolution images with deep neural networks. GIScience & Remote Sensing, 56(5), 749–768.
  • Yang, H. L., Yuan, J., Lunga, D., Laverdiere, M., Rose, A., & Bhaduri, B. (2018a). Building extraction at scale using convolutional neural network: Mapping of the united states. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8), 2600–2614.
  • Yang, J., Fu, X., Hu, Y., Huang, Y., Ding, X., & Paisley, J. (2017). PanNet: A deep network architecture for pan-sharpening. Proceedings of the IEEE International Conference on Computer Vision. 2017: 5449–5457.
  • Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., … Dickinson, R. (2013). The role of satellite remote sensing in climate change studies. Nature Climate Change, 3(10), 875–883.
  • Yang, Z., Dan, T., & Yang, Y. (2018c). Multi-temporal remote sensing image registration using deep convolutional features. IEEE Access, 6, 38544–38555.
  • Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., Gong, P., Ye, J., & Li, Z. (2018). Deep multi-view spatial-temporal network for taxi demand prediction. arXiv preprint arXiv:1802.08714.
  • Ye, F., Su, Y., Xiao, H., Zhao, X., & Min, W. (2018). Remote sensing image registration using convolutional neural network features. IEEE Geoscience and Remote Sensing Letters, 15(2), 232–236.
  • Yin, Z., Ling, F., Foody, G. M., Li, X., & Du, Y. (2020). Cloud detection in Landsat-8 imagery in Google Earth Engine based on a deep convolutional neural network. Remote Sensing Letters, 11(12), 1181–1190.
  • Yin, Z., Wu, P., Foody, G. M., Wu, Y., Liu, Z., Du, Y., & Ling, F. (2020). Spatiotemporal fusion of land surface temperature based on a convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 59(2), 1808–1822.
  • Yuan, J. (2016). Automatic building extraction in aerial scenes using convolutional networks. arXiv preprint arXiv:1602.06564.
  • Yuan, K., Meng, G., Cheng, D., Bai, J., Xiang, S., & Pan, C. (2017, September). Efficient cloud detection in remote sensing images using edge-aware segmentation network and easy-to-hard training strategy. In 2017 IEEE International Conference on Image Processing (ICIP) (pp. 61–65). IEEE. Beijing, China.
  • Zhan, Y., Wang, J., Shi, J., Cheng, G., Yao, L., & Sun, W. (2017). Distinguishing cloud and snow in satellite images via deep convolutional network. IEEE Geoscience and Remote Sensing Letters, 14(10), 1785–1789.
  • Zhang, C., Harrison, P. A., Pan, X., Li, H., Sargent, I., & Atkinson, P. M. (2020a). Scale Sequence Joint Deep Learning (SS-JDL) for land use and land cover classification. Remote Sensing of Environment, 237, 111593.
  • Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., & Atkinson, P. M. (2019a). Joint deep learning for land cover and land use classification. Remote Sensing of Environment, 221, 173–187.
  • Zhang, C., Wei, S., Ji, S., & Lu, M. (2019b). Detecting large-scale urban land cover changes from very high resolution remote sensing images using cnn-based classification. ISPRS International Journal of Geo-Information, 8(4), 189.
  • Zhang, G., Lu, H., Dong, J., Poslad, S., Li, R., Zhang, X., & Rui, X. (2020b). A framework to predict high-resolution spatiotemporal PM2. 5 distributions using a deep-learning model: A case study of Shijiazhuang, China. Remote Sensing, 12(17), 2825.
  • Zhang, H., & Deng, Q. (2019c). Deep learning based fossil-fuel power plant monitoring in high resolution remote sensing images: A comparative study. Remote Sensing, 11(9), 1117.
  • Zhang, H., Ni, W., Yan, W., Xiang, D., Wu, J., Yang, X., & Bian, H. (2019d). Registration of multimodal remote sensing image based on deep fully convolutional neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(8), 3028–3042.
  • Zhang, L., Shi, Z., & Wu, J. (2015). A hierarchical oil tank detector with deep surrounding features for high-resolution optical satellite imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), 4895–4909.
  • Zhang, L., Zhang, L., & Du, B. (2016a). Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine, 4(2), 22–40.
  • Zhang, M., Xu, G., Chen, K., Yan, M., & Sun, X. (2018a). Triplet-based semantic relation learning for aerial remote sensing image change detection. IEEE Geoscience and Remote Sensing Letters, 16(2), 266–270.
  • Zhang, P., Gong, M., Su, L., Liu, J., & Li, Z. (2016b). Change detection based on deep feature representation and mapping transformation for multi-spatial-resolution remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 24–41.
  • Zhang, T., & Huang, X. (2018b). Monitoring of urban impervious surfaces using time series of high-resolution remote sensing images in rapidly urbanized areas: A case study of Shenzhen. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8), 2692–2708.
  • Zhang, Y., Yuan, Y., Feng, Y., & Lu, X. (2019e). Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection. IEEE Transactions on Geoscience and Remote Sensing, 57(8), 5535–5548.
  • Zhang, Z., Guo, W., Zhu, S., & Yu, W. (2018c). Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks. IEEE Geoscience and Remote Sensing Letters, 15(11), 1745–1749.
  • Zhang, Z., Liu, Q., & Wang, Y. (2018d). Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters, 15(5), 749–753.
  • Zhang, Z., & Wang, Y. (2019f). JointNet: A common neural network for road and building extraction. Remote Sensing, 11(6), 696.
  • Zhao, H., Chen, Z., Jiang, H., Jing, W., Sun, L., & Feng, M. (2019). Evaluation of three deep learning models for early crop classification using Sentinel-1A imagery time series—A case study in Zhanjiang, China. Remote Sensing, 11(22), 2673.
  • Zhao, W., Wang, Z., Gong, M., & Liu, J. (2017). Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network. IEEE Transactions on Geoscience and Remote Sensing, 55(12), 7066–7080
  • Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., & Sun, M. (2018). Graph Neural Networks: A Review of Methods and Applications. arXiv preprint arXiv:1812 08434.
  • Zhou, L., Zhang, C., & Wu, M. D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. CVPR Workshops. 2018b: 182–186.Salt Lake City, UT, USA.
  • Zhou, P., Cheng, G., Liu, Z., Bu, S., & Hu, X. (2016). Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping. Multidimensional Systems and Signal Processing, 27(4), 925–944.
  • Zhou, Y., & Grassotti, C. (2020a). Development of a machine learning-based radiometric bias correction for NOAA’s microwave integrated retrieval system (MiRS). Remote Sensing, 12(19), 3160.
  • Zhou, Y., Li, J., Feng, L., Zhang, X., & Hu, X. (2017). Adaptive scale selection for multiscale segmentation of satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(8), 3641–3651.
  • Zhou, Y., Luo, J., Feng, L., Yang, Y., Chen, Y., & Wu, W. (2019). Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. GIScience & Remote Sensing, 56(8), 1170–1191.
  • Zhou, Y., Luo, J., Shen, Z., Hu, X., & Yang, H. (2014). Multiscale water body extraction in urban environments from satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(10), 4301–4312.
  • Zhou, Y. N., Yang, X., Feng, L., Wu, W., Wu, T., Luo, J., & Zhang, X. (2020). Superpixel-based time-series reconstruction for optical images incorporating SAR data using autoencoder networks. GIScience & Remote Sensing, 57(8), 1005–1025
  • Zhu, H., Jiao, L., Ma, W., Liu, F., & Zhao, W. (2019). A novel neural network for remote sensing image matching. IEEE Transactions on Neural Networks and Learning Systems, 30(9), 2853–2865.
  • Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36.