2,715
Views
9
CrossRef citations to date
0
Altmetric
Original Research Article

Intelligent geospatial maritime risk analytics using the Discrete Global Grid System

ORCID Icon, ORCID Icon & ORCID Icon
Pages 294-322 | Received 23 Apr 2021, Accepted 02 Aug 2021, Published online: 13 Sep 2021

References

  • Abualhaol, I. Y., Falcon, R., Abielmona, R. S., & Petriu, E. M. (2018). Mining Port Congestion Indicators from Big AIS Data. International Joint Conference on Neural Networks. Rio de Janeiro, Brazil, 8-13 July 2018.
  • Adland, R., Jia, H., Lode, T., & Skontorp, J. (2021). The value of meteorological data in marine risk assessment. Reliability Engineering and System Safety, 209. doi:10.1016/j.ress.2021.107480
  • Baksh, A., Abbassi, R., Garaniya, V., & Khan, F. (2018). Marine transportation risk assessment using bayesian network: Application to arctic waters. Ocean Engineering, 159, 422–436.
  • Barnes, R. (2016). dggridR: Discrete global grid systems for R [online]. Available at: https://github.com/r-barnes/dggridR. (Accessed 24/ May/2019).
  • Barnes, R. (2019). Optimal orientations of discrete global grids and the Poles of Inaccessibility. International Journal of Digital Earth, 13(7), 803–816.
  • Battersby, S., Stebe, D., & Finn, M. (2016). Shapes on a Plane: Evaluating the impact of projection distortion on spatial binning. Cartography and Geographic Information Science, 44(5), 410–421.
  • Birch, C., Oom, S., & Beecham, J. (2007). Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological Modelling, 206(3–4), 347–359.
  • Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
  • Breiman, L., Freidman, J., Stone, C., & Olshen, R. (1984). Classification and Regression Trees. New York: Taylor and Francis.
  • Bye, R., & Aalberg, A. (2018). Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports. Reliability Engineering and System Safety, 176, 174–186.
  • Chatzikokolakis, K., Zissis, D., Vodas, M., Spiliopoulos, G., & Kontopoulos, I. (2019). A distributed lightning fast maritime anomaly detection service. Oceans 2019, 17-20 June 2019. Marseillle 10.1109/OCEANSE.2019.8867269
  • Correndo, G. (2019). DGGRIDPY Git-hub page [online]. Available at: https://github.com/correndo/dggridpy. (Accessed 22nd May 2020).
  • DNV (2013). North east shipping risk assessment. Report No./DNV Reg No. 0/14OFICX-4 Rev 1.
  • Dorsey, C., Wang, B., Grabowski, M., Merrick, J., & Harrald, J. (2020). Self-healing databases for predictive risk analytics in safety-critical systems. Journal of Loss Prevention in the Process Industries, 63. doi:10.1016/j.jlp.2019.104014
  • Eguiluz, V., Fernandez-Gracia, J., Irigoien, X., & Duarte, C. (2016). A quantitative assessment of Arctic shipping in 2010-2014. Scientific Reports, 6. doi:10.1038/srep30682
  • EMSA. (2018). Joint Workshop on Risk Assessment and Response Planning in Europe [online]. Available at: http://www.emsa.europa.eu/workshops-a-events/188-workshops/3246-joint-workshop-on-risk-assessment-response-planning-in-europe.html. (Accessed 17th August 2021).
  • Filipiak, D., Strozyna, M., Wecel, K., and Abramowicz, W. (2018). Anomaly Detection in the maritime Domain: Comparison of Traditional and Big Data Approach [online]. Available at:https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-IST-160/MP-IST-160-S2-5P.pdf(Accessed 17th August 2021)
  • Fujii, Y., & Tanaka, R. (1971). Traffic Capacity. Journal of Navigation, 24(4), 543–552.
  • Gibb, R. G. (2016). The rHealPIX Discrete Global Grid System. Proceedings of the 9th Symposium of the International Society for Digital Earth, Halifax, Canada, 5-9 October 2015. 10.1088/1755-1315/34/1/012012.
  • Goodchild, M. (2000). Discrete Global Grids for Digital Earth. International Conference on Discrete Global Grids. Santa Barbara.
  • Goodchild, M. (2018). Reimagining the history of GIS. Annals of GIS, 24(1), 1–8.
  • Hanninen, M. (2014). Bayesian networks for maritime traffic accident prevention: Benefits and challenges. Accident Analysis and Prevention, 73, 305–312.
  • Harati-Mokhtari, A., Wall, A., Brooks, P., & Wang, J. (2007). Automatic Identification System (AIS): Data reliability and human error implications. Journal of Navigation, 60(3), 373–389. https://www.cambridge.org/core/journals/journal-of-navigation/article/abs/automatic-identification-system-ais-data-reliability-and-human-error-implications/6664900351CB5D9C3FF45F16D96F8832
  • Hassel, M., Asbjornslett, B., & Hole, L. (2011). Underreporting of maritime accidents to vessel accident databases. Accident Analysis and Prevention, 43(6), 2053–2063.
  • Hedge, J., & Rokseth, B. (2020). Applications of machine learning methods for engineering risk assessment – A Review. Safety Science, 122. doi:10.1016/j.ssci.2019.09.015
  • Hilliard, F. M., Rezaee, C., & Pelot, R. (2018). Past, present and future of the satellite-based automatic identification system: Areas of applications (2004-2016). WMU Journal of Maritime Affairs, 17(3), 311–345.
  • Hoorn, S., & Knapp, S. (2015). A multi-layered risk exposure assessment approach for the shipping industry. Transportation Research Part A, 78, 21–33.
  • IALA. (2002). IALA Guidelines on the Universal Automatic Identification System (AIS). Volume 1, Part II – Technical Issues (Edition 1.1 ed.). France: IALA.
  • IALA. (2011). IALA Guideline No 1082 on an Overview of AIS (Edition 1 ed.). France: IALA.
  • IMO. (2004). International Convention for the Safety of Life at Sea. London: IMO.
  • Iphar, C., Ray, C., & Napoli, A. (2019). Uses and misuses of the automatic identification system. Oceans 2019, 17-20 June 2019. Marseille 10.1109/OCEANSE.2019.8867559
  • Iphar, C., Ray, C., & Napoli, A. (2020). Data integrity assessment for maritime anomaly detection. Expert Systems with Applications, 147. doi:10.1016/j.eswa.2020.113219
  • Jendryke, M., & McClure, S. (2019). Mapping crime – Hate crimes and hate groups in the USA: A Spatial analysis with gridded data. Applied Geography, 111. doi:10.1016/j.apgeog.2019.102072
  • Jin, M., Shi, W., Yuen, K., Xiao, Y., & Li, K. (2019). Oil tanker risks on the marine environment: An empirical study and policy implications. Marine Policy, 108. doi:10.1016/j.marpol.2019.103655
  • Kahneman, D. (2011). Thinking, Fast and Slow. London: Penguin.
  • Kim, I., Lee, H., & Lee, D. (2019). Development of a new tool for objective risk assessment and comparative analysis at coastal waters. Journal of International Maritime Safety, Environmental Affairs and Shipping, 2(2), 58–66.
  • Kite-Powell, H., Jin, D., Jebsen, J., Papkonstantinou, V., & Patrikalakis, N. (1999). Investigation of potential risk factors for groundings of commercial vessels in U.S. Ports. International Journal of Offshore and Polar Engineering, 9, 16-21.
  • Kontopoulos, I., Varlamis, I., & Tserpes, K. (2020). A Distributed framework for extracting maritime traffic patterns. International Journal of Geographical Information Science, 35(4), 767–792.
  • Kristiansen, S. (2005). Maritime Transportation Safety Management and Risk Analysis. Oxford: Routledge.
  • Kulkarni, K., Goerlandt, F., Li, J., Banda, O., & Kujala, P. (2020). Preventing shipping accidents: Past, present and future of waterway risk management with Baltic Sea focus. Safety Science, 129. doi:10.1016/j.ssci.2020.104798
  • Leevy, J., Khoshgoftaar, T., Bauder, R., & Seliya, N. (2018). A survey on addressing high-class imbalance in big data. Journal of Big Data, 5(1), 42.
  • Lensu, M., & Goerlandt, F. (2019). Big maritime data for the Baltic Sea with a focus on the winter navigation system. Marine Policy, 104, 53–65.
  • Lim, G., Cho, J., Bora, S., Biobaku, T., & Parsaei, H. (2018). Models and computational algorithms for maritime risk analysis: A review. Annals of Operational Research, 271(2), 765–786.
  • Macduff, T. (1974). Probability of vessel collisions. Ocean Industry, 9, 144–148.
  • MAIB. (2014a). Report on the investigation of the collision between Paula C and Darya Gayatri in the South-west lane of the Dover Traffic Separation Scheme on 11 December 2013. Report No 25/2014.
  • MAIB. (2014b). Report on the investigation of the grounding of Danio off Longstone, Farne Islands, England on 16 March 2013. Report No 8/2014.
  • MarineTraffic. (2017). Marine Traffic: 2007-2017. [online]. Available at: https://issuu.com/marinetraffic/docs/marinetraffic_issueone. (Accessed 19/ April/2019).
  • Mazaheri, A., Montewka, J., Kotilainen, P., Sormunen, O. E., & Kujala, P. (2014). Assessing grounding frequency using ship traffic and waterway complexity. Journal of Navigation, 68(1), 89–106.
  • Mazaheri, A., Montewka, J., & Kujala, P. (2013). Correlation between the ship grounding accident and the ship traffic – a case study based on the statistics of the gulf of finland. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 7(1), 119–124.
  • Mazaheri, A., Montewka, J., & Kujala, P. (2016). Towards an evidence-based probabilistic risk model for ship-grounding accidents. Safety Science, 86, 195–210.
  • Milne, D., & Watling, D. (2019). Big data and understanding change in the context of planning transport systems. Journal of Transport Geography, 76, 235–244.
  • MMO (2014). Mapping UK Shipping Density and Routes Technical Annex: 1066. [online]. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/317771/1066-annex.pdf. (Accessed 19/ 04/2019).
  • Olba, X., Daamen, W., Vellinga, T., & Hoogendoorn, S. (2019a). Multi-criteria evaluation of vessel traffic for port assessment: A case study of the Port of Rotterdam. Case Studies on Transport Policy, 7(4), 871–881.
  • Olba, X., Daamen, W. V., Vellinga, T., & Hoogendoorn, S. (2019b). Risk assessment methodology for vessel traffic in ports by defining the nautical port risk index. Journal of Marine Science and Engineering, 8. doi:10.3390/jmse8010010
  • Openshaw, S. (1977). Optimal zoning systems for spatial interaction models. Environment & Planning A, 9(2), 169–184.
  • Purss, M., Peterson, P., Strobl, P., Dow, C., Sabeur, Z., Gibb, R., & Ben, J. (2019). Datacubes – A discrete global grid systems perspective. Cartographica: The International Journal for Geographic Information and Geovisualisation, 54(1), 63–71.
  • Qu, X., Meng, Q., & Li, S. (2012). Analyses and Implications of Accidents in Singapore Strait. Transportation Research Record: Journal of the Transportation Research Board, 2273(1), 106–111.
  • Rawson, A., Sabeur, Z., & Correndo, G. (2019) Spatial challenges of maritime risk analysis using big data. S. C. Guedes (ed.) In Proceedings of the 8th International Conference on Collision and Grounding of Ships and Offshore Structures (ICCGS 2019), Lisbon, Portugal, (21st to 23rd October 2019). vol. 4, CRC Press/Balkema. pp. 275–283.
  • Rawson, A., & Brito, M. (2021). A critique of the use of domain analysis for spatial collision risk assessment. Ocean Engineering, 219, 108259.
  • Rawson, A., Brito, M., Sabeur, Z., & Tran-Thanh, L. (2021). A machine learning approach for monitoring ship safety in extreme weather events. Safety Science, 141, 105336.
  • Riskaware (2017). The OpenEAGGR software library on Github [online]. Available at: https://github.com/riskaware-ltd/open-eaggr/. (Accessed 24/ May/2019).
  • Robertson, C., Chaudhuri, C., Hojati, M., & Roberts, S. (2020). An integrated environmental analytics system (IDEAS) based on a DGGS. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 214–228.
  • Sahr, K. M., White, D., & Kimerling, A. J. (2003). Geodesic discrete global grid systems. Cartography and Geographic Information Science, 30(2), 121–134.
  • Scully, B., Young, D., & Ross, J. (2019). Mining marine vessel AIS data to inform coastal structure management. Journal of Waterway, Port, Coastal, Ocean Engineering, 146, 2.
  • Svanberg, M., Santen, V., Horteborn, A., Holm, H., & Finnsgard, C. (2019). AIS in maritime research. Marine Policy, 106. 10.1016/j.marpol.2019.103520
  • Tetlock, P. (2005). Expert Political Judgement: How Good is it? How Can we Know? Princeton: Princeton University Press.
  • Tsou, M. (2019). Big data analytics of safety assessment for a port of entry: A case study in Keelung Harbour. Proceedings of the Institute of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 233, pp. 1260–1275.
  • Uber. (2018). Hexagonal hierarchical geospatial indexing system [online]. Available at: https://github.com/uber/h3. (Accessed 24/ May/2019).
  • USCG. (2005). Ports and Waterways Safety Assessment Workshop Guide [online]. Available at: https://www.navcen.uscg.gov/?pageName=pawsaGuide. (Accessed 21st May 2020).
  • Van Dorp, J., & Merrick, J. (2014). VTRA 2010 [online]. Available at:https://www2.seas.gwu.edu/~dorpjr/tab4/publications_VTRA_Update_Reports.html (Accessed 17th August 2021)
  • Van Dorp, J. R., Harrald, J. R., Marrick, J. R. W., & Grabowski, M. (2008). VTRA: Technical Appendix D: Expert Judgement Elicitation. [online]. Available at: https://www2.seas.gwu.edu/~dorpjr/VTRA/FINAL%20REPORT/083108/VTRA%20REPORT%20-%20Appendix%20D%20083108.pdf. (Accessed 19/ 04/2019).
  • Widhalm, G. A., & Dragaschnig, M. (2020). The M3 massive movement model: A distributed incrementally updatable solution for big movement data exploration. International Journal of Geographical Information Science, 34(2), 2517–2540.
  • Wu, L., Xu, Y., Wang, Q., Wang, F., & Xu, Z. (2017). Mapping global shipping density from AIS data. Journal of Navigation, 70(1), 67–81.
  • Yang, D., Wu, L., Wang, S., Jia, H., & Li, K. (2019). How big data enriches maritime research – A critical review of Automatic Identification System (AIS) data applications. Transport Reviews, 39(6), 755–773.
  • Yuan, Z., Zhou, X., Yang, T., Tamerius, J., & Mantilla, R. (2017). Predicting traffic accidents through heterogeneous urban data: A case study. 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Halifax. 10.1145/3347146.3359078.
  • Zhang, L., Meng, Q., & Fwa, T. (2017). Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters. Transportation Research Part E, 129, 287–304.
  • Zhang, Y., Sun, X., Chen, J., & Cheng, C. (2021). Spatial patterns and characteristics of global maritime accidents. Reliability Engineering and System Safety, 206. 10.1016/j.ress.2020.107310