2,460
Views
5
CrossRef citations to date
0
Altmetric
Data Article

A lake ice phenology dataset for the Northern Hemisphere based on passive microwave remote sensing

, ORCID Icon, , ORCID Icon, , & ORCID Icon show all
Pages 401-419 | Received 01 Jun 2021, Accepted 08 Oct 2021, Published online: 08 Dec 2021

References

  • Beck, H., Zimmermann, N., McVicar, T., Vergopolan, N., Berg, A., & Wood, E. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 214(5), 180214.111.
  • Benson, B., Magnuson, J., & Sharma, S. (2000). updated 2020. Global lake and river ice phenology database, version 1. [Indicate subset used]. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. doi: 10.7265/N5W66HP8.
  • Brodzik, M. J., Long, D. G., Hardman, M. A., Paget, A., & Armstrong, R. (2016), Updated 2020. MEaSUREs calibrated enhanced-resolution passive microwave daily EASE-grid 2.0 brightness temperature ESDR, version 1. [Indicate subset used]. boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: 10.5067/MEASURES/CRYOSPHERE/NSIDC-0630.001.
  • Brooks, R. N., Prowse, T., & O’Connell, I. J. (2013). Quantifying Northern Hemisphere freshwater ice. Geophysical Research Letters, 40(6), 1128–1131.
  • Cai, Y., Ke, C., Li, X., Zhang, G., Duan, Z., & Lee, H. (2019). Variations of lake ice phenology on the Tibetan Plateau from 2001 to 2017 based on MODIS data. Journal of Geophysical Research, 124, 825–843.
  • Canadian Cryospheric Information Network. Canadian lake ice database [EB/OL]. (November 13, 2017). Accessed 2021 February 26. Retrieved from https://www.polardata.ca/pdcsearch/PDCSearch.jsp?doi_id=1821
  • Denfeld, B., Baulch, H., Giorgio, P., Hampton, S., & Karlsson, J. (2018). A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes. Limnology and Oceanography, 3(3), 117–131.
  • Du, J., Kimball, J. S., Duguay, C., Kim, Y., & Watts, J. D. (2017). Satellite microwave assessment of Northern Hemisphere lake ice phenology from 2002 to 2015. The Cryosphere, 11(1), 47–63.
  • Duguay, C. R., Prowse, T. D., Bonsal, B., Brown, R., Lacroix, M. P., & Menard, P. (2006). Recent trends in Canadian lake ice cover. Hydrological Processes, 20(4), 781–801.
  • Filazzola, A., Blagrave, K., Imrit, M., & Sharma, S. (2020). Climate change drives increases in extreme events for lake ice in the Northern Hemisphere. Geophysical Research Letters, 47(18), e2020GL089608.
  • Gloersen, P., & Barath, F. (1977). A scanning multichannel microwave radiometer for Nimbus-G and SeaSat-A. IEEE Journal of Oceanic Engineering, 2(2), 172–178.
  • Gou, P., Ye, Q., Che, T., Feng, Q., Ding, B., Lin, C., & Zong, J. (2017). Lake ice phenology of Nam Co, Central Tibetan Plateau, China, derived from multiple MODIS data products. Journal of Great Lakes Research, 43(6), 989–998.
  • Guo, H., Li, X., & Qiu, Y. (2020). Comparison of global change at the Earth’s three poles using spaceborne earth observation. Chinese Science Bulletin, 65, 1320–1323.
  • Hollinger, J. P., Peirce, J. L., & Poe, G. A. (1990). SSM/I instrument evaluation. IEEE Transactions on Geoscience and Remote Sensing, 28(5), 781–790.
  • Howell, S., Brown, L. C., Kang, K., & Duguay, C. (2009). Variability in ice phenology on great bear lake and great slave lake, Northwest Territories, Canada, from SeaWinds/QuikSCAT: 2000-2006. Remote Sensing of Environment, 113(4), 816–834.
  • Kang, K., Duguay, C., & Howell, S. (2011). Estimating ice phenology on large northern lakes from AMSR-E: Algorithm development and application to great bear lake and great slave lake, Canada. The Cryosphere, 6(2), 235–254.
  • Kang, K., Duguay, C., Lemmetyinen, J., & Gel, Y. (2014). Estimation of ice thickness on large northern lakes from AMSR-E brightness temperature measurements. Remote Sensing of Environment, 150, 1–19.
  • Karetnikov, S., Leppäranta, M., & Montonen, A. (2017). A time series of over 100 years of ice seasons on lake Ladoga. Journal of Great Lakes Research, 43(6), 979–988.
  • Kawanishi, T., Sezai, T., Ito, Y., Imaoka, K., Takeshima, T., Ishido, Y., … Spencer, R. (2003). The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote. Sensing, 41(2), 184–194.
  • Kropácek, J., Maussion, F., Chen, F., Hoerz, S., & Hochschild, V. (2013). Analysis of ice phenology of lakes on the Tibetan Plateau from MODIS data. The Cryosphere, 7(1), 287–301.
  • Latifovic, R., & Pouliot, D. (2007). Analysis of climate change impacts on lake ice phenology in Canada using the historical satellite data record. Remote Sensing of Environment, 106(4), 492–507.
  • Leppäranta, M. (2015). Freezing of lakes and the evolution of their ice cover, (chapter 1, pp.1-10; chapter 2, pp.11-50; chapter 3, 51-90). In Leppäranta M. (Ed.). Springer-Praxis. Germany: Heidelberg.
  • Li, X., Che, T., Wang, L., Duan, A., Shangguan, D., Pan, X., Fang, M., & Bao, Q. (2020). CASEarth Poles: Big Data for the Three Poles. Bulletin of the American Meteorological Society, 101, E1475–E1491.
  • Long, D., Brodzik, M., & Hardman, M. (2019). Enhanced-resolution SMAP brightness temperature image products. IEEE Transactions on Geoscience and Remote Sensing, 57(7), 4151–4163.
  • Lu, J., Qiu, Y., Wang, X., Liang, W., Xie, P., Shi, L., … Zhang, D. (2020). Constructing dataset of classified drainage areas based on surface water-supply patterns in High Mountain Asia. Big Earth Data, 4(3), 225–241.
  • Maeda, T., Imaoka, K., Kachi, M., Fujii, H., Shibata, A., Naoki, K., … Oki, T. (2011). Status of GCOM-W1/AMSR2 development, algorithms, and products. SPIE Remote Sensing, 8176, 6012–6015.
  • Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai, T., … Vuglinski, V. S. (2000). Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289(5485), 1743–1746.
  • Messager, M. L., Lehner, B., Grill, G., Nedeva, I., & Schmitt, O. (2016). Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications, 7(1), 13603.
  • National centers for environmental information [EB/OL]. (2017). Accessed 2021 April 30. https://www.ncdc.noaa.gov/gosic/gcos-essential-climate-variable-ecv-data-access-matrix/gcos-land-ecv-lakes
  • Qiu, Y., Guo, H., Ruan, Y., Fu, X., Shi, L., & Tian, B. (2017). A dataset of microwave brightness temperature and freeze-thaw for medium-to-large lakes over the High Asia region 2002–2016. Science Data Bank. doi:10.11922/csdata.170.2017.0117
  • Qiu, Y., Massimo, M., Li, X., Birendra, B., Joni, K., Narantuya, D., … Zhao, T. (2017). Observing and understanding High Mountain and cold regions using Big Earth Data. Bulletin of Chinese Academy of Sciences, 32(Z1), 82–94.
  • Qiu, Y., Xie, P., Leppäranta, M., Wang, X., Lemmetyinen, J., Lin, H., & Shi, L. (2019). MODIS-based daily lake ice extent and coverage dataset for Tibetan Plateau. Big Earth Data, 3(2), 170–185.
  • Reed, B., Budde, M., Spencer, P., & Miller, A. E. (2009). Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska. Remote Sensing of Environment, 113(7), 1443–1452.
  • Ruan, Y., Zhang, X., Xin, Q., Qiu, Y., & Sun, Y. (2020). Prediction and analysis of lake ice phenology dynamics under future climate scenarios across the Inner Tibetan Plateau. Journal of Geophysical Research, 125, e2020JD033082.
  • Sharma, S., Blagrave, K., Magnuson, J., O’Reilly, C., Oliver, S., Batt, R., … Woolway, R. (2019). Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change, 9(3), 227–231.
  • Sharma, S., Meyer, M., Culpepper, J., Yang, X., Hampton, S., Berger, S. A., … Zhang, S. (2020). Integrating perspectives to understand lake ice dynamics in a changing world. Journal of Geophysical Research, 125, e2020JG005799.
  • Šmejkalová, T., Edwards, M. E., & Dash, J. (2016). Arctic lakes show strong decadal trend in earlier spring ice-out. Scientific Reports, 6(1), 38449.
  • Su, L., Che, T., & Dai, L. (2021). Variation in ice phenology of large lakes over the Northern Hemisphere based on passive microwave remote sensing data. Remote Sensing, 13(7), 1389.
  • Ulaby, F., Moore, R., & Fung, A. (1981). Microwave remote sensing fundamentals and radiometry.
  • Wang, X., Qiu, Y., Xie, P., Lemmetyinen, J., Liang, W., & Cheng, B. (2019). Comparative analysis to the lake ice phenology changes of Mongolian Plateau, Tibetan Plateau and Northern Europe through passive microwave. 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall, Xia'men, China), 3222–3228.
  • Woolway, R., Kraemer, B., Lenters, J., Merchant, C., O’Reilly, C., & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8), 388–403.
  • Wu, Y., Duguay, C., & Xu, L. (2020). Assessment of machine learning classifiers for global lake ice cover mapping from MODIS TOA reflectance data. Remote Sensing of Environment, 253(5), 112206.
  • Yang, H., Weng, F., Lv, L., Lu, N., Liu, G., Bai, M., … Xu, H. (2011). The FengYun-3 microwave radiation imager on-orbit verification. IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4552–4560.
  • Yang, J., Dong, C., Lu, N., Yang, Z., Shi, J., Zhang, P., … Cai, B. (2009). FY-3A: The new generation Polar-Orbiting meteorological satellite of China. Acta Meteorologica Sinica, 67(4), in Chinese, 501–509.
  • Zhang, G., Yao, T., Xie, H., Yang, K., Zhu, L., Shum, C., … Ke, C. (2020). Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 208, 103269.
  • Zhang, S., & Pavelsky, T. (2019). Remote sensing of lake ice phenology across a range of lakes sizes, ME, USA. Remote Sensing, 11(14), 1718.