1,434
Views
2
CrossRef citations to date
0
Altmetric
Data Article

Pan-Arctic ocean wind and wave data by spaceborne SAR

, &
Pages 144-163 | Received 09 Aug 2021, Accepted 19 Oct 2021, Published online: 07 Dec 2021

References

  • Ali, M. M., Bhat, G. S., Long, D. G., Bharadwaj, S., & Bourassa, M. A. (2013). Estimating wind stress at the ocean surface from scatterometer observations. IEEE Geoscience and Remote Sensing Letters, 10(5), 1129–1132.
  • Alpers, W. R., Ross, D. B., & Rufenach, C. L. (1981). On the detectability of ocean surface waves by real and synthetic aperture radar. Journal of Geophysical Research, 86(C7), C7.
  • Ardhuin, F., Chapron, B., & Collard, F. (2009). Observation of swell dissipation across oceans. Geophysical Research Letters, 36(6), L06607.
  • Asplin, M. G., Galley, R., Barber, D. G., & Prinsenberg, S. (2012). Fracture of summer perennial sea ice by ocean swell as a result of Arctic storms. Journal of Geophysical Research: Oceans, 117(C6), C6.
  • ESA (European Space Agency). (2016). Sentinel-1 product specification. (Retrieved October 5, 2020). https://sentinel.esa.int/web/sentinel/document-library/content/-/article/sentinel-1-product-specification
  • Hasselmann, S., Brüning, C., Hasselmann, K., & Heimbach, P. (1996). An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra. Journal of Geophysical Research: Oceans, 101(C7), 16615–16629.
  • Helfrich, S. R., Li, M., Kongoli, C., Nagdimunov, L., & Rodriguez., E. (2019). Interactive multisensor snow and ice mapping system version 3 (IMS V3) - algorithm theoretical basis document version 2.5. NOAA NESDIS Center for Satellite Applications and Research (STAR), 74.
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., & Thépaut, J. (2020). The Era5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society doi:https://doi.org/10.1002/qj.3803
  • Huang, W., Gill, E. W., Wen, B., Wen, B., & Hou, J. (2002). Hf radar wave and wind measurement over the eastern China sea. IEEE Transactions on Geoscience and Remote Sensing, 40(9), 1950.
  • Huang, W., Liu, X., & Gill, E. W. (2017). Ocean wind and wave measurements using x-band marine radar: A comprehensive review. Remote Sensing, 9(12), 1261.
  • Inoue, J., Yamazaki, A., Ono, J., Dethloff, K., Maturilli, M., Neuber, R., & Yamaguchi, H. (2015). Additional arctic Observations Improve Weather and Sea-ice Forecasts for the Northern Sea Route. Scientific Reports, 5, 16868.
  • Khan, S. S., Echevarria, E. R., & Hemer, M. A. (2021). Journal of Geophysical Research: Oceans. Ocean Swell Comparisons between Sentinel-1 and WAVEWATCH III around Australia, 126, e2020JC016265.
  • Kodaira, T., Waseda, T., Nose, T., Sato, K., Babanin, A., Voermans, J., & Babanin, A. (2021). Observation of on-ice wind waves under grease ice in the western Arctic ocean. Polar Science, 27(96), 100567.
  • Leigh, S., Wang, Z., & Clausi, D. A. (2014). Automated ice-water classification using dual polarization sar satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 52(9), 5529–5539.
  • Li, S., Shen, H., Hou, Y., He, Y., & Bi, F. (2018). Sea surface wind speed and sea state retrievals from dual-frequency altimeter and its preliminary application in global view of wind-sea and swell distributions. International Journal of Remote Sensing, 39(10), 3076–3093.
  • Li, X.-M. (2016). A new insight from space into swell propagation and crossing in the global oceans. Geophysical Research Letters, 43(10), 5202–5209.
  • Li, X. M., ., & Huang, B. Q. (2020). A global sea state data set from spaceborne synthetic aperture radar wave mode data. Scientific Data, 7(1), 261.
  • Li, X. M., & Lehner, S. (2013). Observation of terrasar-x for studies on offshore wind turbine wake in near and far fields. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 6(3), 1757–1768.
  • Li, X.-M., Lehner, S., & Bruns, T. (2011). Ocean wave integral parameter measurements using Envisat ASAR wave mode data. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 155–174.
  • Li, X. M., Qin, T. T., & Wu, K. (2020). Retrieval of sea surface wind speed from spaceborne SAR over the Arctic marginal ice zone with a neural network. Remote Sensing, 12, 20.
  • Li, X.-M., Sun, Y., & Zhang, Q. (2021). Extraction of sea ice cover by Sentinel-1 SAR based on support vector machine with unsupervised generation of training data. IEEE Transactions on Geoscience and Remote Sensing, 1–14. doi:https://doi.org/10.1109/TGRS.2020.3007789
  • Ozbahceci, B. O. (2020). Extreme value statistics of wind speed and wave height of the Marmara sea based on combined radar altimeter data. Advances in Space Research, 66(10), 2302–2318.
  • Podgórski, K., & Rychlik, I. (2014). A model of significant wave height for reliability assessment of a ship. Journal of Marine Systems, 130, 109–123.
  • Ribal, A., & Young, I. R. (2019). 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Scientific Data, 6, 1–15.
  • Rubio, A., Mader, J., Corgnati, L., Mantovani, C., Griffa, A., Novellino, A., & Puillat, I. (2017). radar activity in European coastal seas: Next steps toward a pan-European HF radar network. Frontiers in Marine Science, 4, 8.
  • Schulz-Stellenfleth, J., König, T., & Lehner, S. (2007). An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data. Journal of Geophysical Research, 112(C3), C3.
  • Schulz-Stellenfleth, J., & Lehner, S. (2004). Measurement of 2-D Sea Surface Elevation Fields Using Complex Synthetic Aperture Radar Data. IEEE Transactions on Geoscience and Remote Sensing, 42(6), 1149–1160.
  • Stoffelen, A., & Anderson, D. (1997). Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. Journal of Geophysical Research Oceans, 102(C3), 5767–5780.
  • Stopa, J. E., Ardhuin, F., Thomson, J., Smith, M. M., Kohout, A., Doble, M., Wadhams, P. (2018). Wave attenuation through an Arctic marginal ice zone on 12 October 2015: 1. measurement of wave spectra and ice features from sentinel 1A. Journal of Geophysical Research: Oceans, 123(5), 3619–3634.
  • Stopa, J. E., & Mouche, A. (2017). Significant wave heights from Sentinel-1 SAR: Validation and applications. Journal of Geophysical Research: Oceans, 122(3), 1827–1848.
  • Thompson, D. R., & Beal, R. C. (2000). Mapping high-resolution wind fields using synthetic aperture radar. Johns Hopkins University Technical Digest, 273(5279), 1181–1182.
  • Tukey, J. (1977). Exploratory Data Analysis. Addison-Wesley Publishing Company, Reading, Massachusetts.
  • Wang, Y., & Li, X.-M. (2021). Arctic sea ice cover data in high spatial resolution from spaceborne synthetic aperture radar by deep learning. Earth System Science Data, 13(6), 2723–2742.
  • Waseda, T., Webb, A., Sato, K., Inoue, J., Kohout, A., Penrose, B., & Penros, S. (2018). Correlated increase of high ocean waves and winds in the ice-free waters of the arctic ocean. Scientific Reports, 8(1), 4489.
  • Wu, K., Li, X.-M., & Huang, B. Q. (2021). Retrieval of ocean wave heights from spaceborne sar in the arctic ocean with a neural network. Journal of Geophysical Research: Oceans, 126(3). doi:https://doi.org/10.1029/2020JC016946
  • Young, I. R., Zieger, S., & Babanin., A. V. (2011). Global trends in wind speed and wave height. Science, 332(6028), 451–455.