2,775
Views
0
CrossRef citations to date
0
Altmetric
Data Article

CPSDv0: a forest stand structure database for plantation forests in China

ORCID Icon, , , , , , ORCID Icon, , , , , , , , , & ORCID Icon show all
Pages 212-230 | Received 20 Jul 2021, Accepted 25 Nov 2021, Published online: 20 Jan 2022

References

  • Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., and Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684.
  • Bale, C. L., Williams, J. B., & Charley, J. L. (1998). The impact of aspect on forest structure and floristics in some Eastern Australian sites. Forest Ecology and Management, 110(1–3), 363–377.
  • Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., … Papale, D. (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329(5993), 834–838.
  • Bell, D. M., Bradford, J. B., & Lauenroth, W. K. (2014). Forest stand structure, productivity, and age mediate climatic effects on aspen decline. Ecology, 95(8), 2040–2046.
  • Bellassen, V., Le Maire, G., Dhôte, J. F., Ciais, P., & Viovy, N. (2010). Modelling forest management within a global vegetation model—Part 1: Model structure and general behavior. Ecological Modelling, 221(20), 2458–2474.
  • Bonan, G. B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.
  • Cai, X., Lin, Z., Penttinen, P., Li, Y., Li, Y., Luo, Y., et al (2018). Effects of conversion from a natural evergreen broadleaf forest to a Moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area. Forest Ecology and Management, 422, 161–171.
  • Cao, S., Chen, L., Shankman, D., Wang, C., Wang, X., & Zhang, H. (2011). Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Science Reviews, 104(4), 240–245.
  • Cao, S., Sun, G., Zhang, Z., Chen, L., Feng, Q., Fu, B., … Wei, X. (2011). Greening China naturally. AMBIO, 40(7), 828–831.
  • Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sanchez, G., & Penuelas, J. (2011). Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences, 108(4), 1474–1478.
  • Carnus, J. M., Parrotta, J., Brockerhoff, E., Arbez, M., Jactel, H., Kremer, A., … Walters, B. (2006). Planted forests and biodiversity. Journal of Forestry. 104(2), 65–77.
  • Carrer, M., & Urbinati, C. (2004). Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology, 85(3), 730–740.
  • Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., & Myneni, R. B. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2(2), 122–129.
  • Chen, Y. Z., Chen, L. Y., Cheng, Y., Ju, W. M., Chen, H. Y. H., & Ruan, H. H. (2020). Afforestation promotes the enhancement of forest LAI and NPP in China. Forest Ecology and Management, 462, 117990.
  • Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., & Bradford, M. A. (2015). Mapping tree density at a global scale. Nature, 525(7568), 201–205.
  • D’Amato, A. W., Bradford, J. B., Fraver, S., & Palik, B. J. (2013). Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 23(8), 1735–1742.
  • Dobrowski, S. Z., Swanson, A. K., Abatzoglou, J. T., Holden, Z. A., Safford, H. D., Schwartz, M. K., & Gavin, D. G. (2015). Forest structure and species traits mediate projected recruitment declines in western US tree species. Global Ecology and Biogeography, 24(8), 917–927.
  • Dong, L., Zhang, L., & Li, F. (2016). Developing two additive biomass equations for three coniferous plantation species in Northeast China. Forests, 7(12)), 136.
  • Donoghue, D. N. M., Watt, P. J., Cox, N. J., & Wilson, J. (2007). Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data. Remote Sensing of Environment, 110(4), 509–522.
  • Fagan, M. E., Morton, D. C., Cook, B. D., Masek, J., Zhao, F., Nelson, R. F., & Huang, C. (2018). Mapping pine plantations in the southeastern U.S. using structural, spectral, and temporal remote sensing data. Remote Sensing of Environment, 216, 415–426.
  • Fang, J.Y., Chen, A.P., Peng, C.H., Zhao, S.Q., & Ci, L.J. (2001). Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998. Science, 292(5525), 2320–2322.
  • Fang, J.Y., Shen, Z.H., Tang, Z.Y., Wang, X.P., Wang, Z.H., Feng, J.M., and Zheng, C.Y. (2013). Forest community survey and the structural characteristics of forests in China. Ecography, 35(12), 1059–1071.
  • FAO. Global planted forests thematic study: Results and analysis. by A. Del Lugo, J. Ball and J. Carle, Planted Forests and Trees Working Paper 38. Rome. (2006).
  • Feng, X., Fu, B., Piao, S., Wang, S., Ciais, P., Zeng, Z., … Wu, B.(2016). Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6(11), 1019–1022.
  • Fleiss, J. L., & Gross, A. J. (1991). Meta-analysis in epidemiology, with special reference to studies of the association between exposure to environmental tobacco smoke and lung cancer: A critique. Journal of Clinical Epidemiology, 44(2), 127–139.
  • Forzieri, G., Alkama, R., Miralles, D. G., & Cescatti, A. (2017). Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Scinence, 356(6343), 1140–1144.
  • Giuggiola, A., Bugmann, H., Zingg, A., Dobbertin, M., & Rigling, A. (2013). Reduction of stand density increases drought resistance in xeric Scots pine forests. Forest Ecology and Management, 310, 827–835.
  • Glick, H. B., Bettigole, C., Maynard, D. S., Covey, K. R., Smith, J. R., & Crowther, T. W. (2016). Spatially-explicit models of global tree density. Scientific Data, 3(1), 160069.
  • Gómez-aparicio, L., García-valdés, R., Ruíz-benito, P., & Zavala, M. A. (2011). Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: Implications for forest management under global change. Global Change Biology, 17(7), 2400–2414.
  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., … Townshend, J. R. G. (2013). High-Resolution global maps of 21st-Century forest cover change. Science, 342(6160), 850.
  • Hong, S. B., Piao, S. L., Chen, A. P., Liu, Y. W., Liu, L. L., Peng, S. S., … Zeng, H. (2018). Afforestation neutralizes soil pH. Nature Communications, 9(1), 520.
  • Huang, Z., He, Z., Wan, X., Hu, Z., Fan, S., & Yang, Y. (2013). Harvest residue management effects on tree growth and ecosystem carbon in a Chinese fir plantation in subtropical China. Plant and Soil, 364(1–2), 303–314.
  • Hurtt, G. C., Dubayah, R., Drake, J., Moorcroft, P. R., Pacala, S. W., Blair, J. B., & Fearon, M. G. (2004). Beyond potential vegetation: Combining Lidar data and a height-structured model for carbon studies. Ecological Applications, 14(873–883), 873–883.
  • Jactel, H., Brockerhoff, E., & Duelli, P. (2005). “A test of the biodiversity-stability theory: Meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors,” in forest diversity and function: Temperate and boreal systems (pp. 235–262). (M. Scherer-Lorenzen, C. Körner, & E. Schulze, eds). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Kerhoulas, L. P., Kolb, T. E., & Koch, G. W. (2013). Tree size, stand density, and the source of water used across seasons by ponderosa pine in northern Arizona. Forest Ecology and Management, 289, 425–433.
  • Klein, T., Randin, C., & Körner, C. (2015). Water availability predicts forest canopy height at the global scale. Ecology Letters, 18(1311–1320), 1311–1320.
  • Li, Y., Piao, S. L., Li, L. Z. X., Chen, A. P., Wang, X. H., Ciais, P., … Zhou, L. M. (2018). Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 4(5), eaar4182.
  • Lin, S., Li, Y., Li, Y.H., Chen, Q., Wang, Q.L., & He, K.N. (2021). Influence of tree size, local forest structure, topography, and soil resource availability on plantation growth in Qinghai Province, China. Ecological Indicators, 120, 106957, doi:10.1016/j.ecolind.2020.106957
  • Liu, J., Li, S., Ouyang, Z., Tam, C., & Chen, X. (2008). Ecological and socioeconomic effects of China’s policies for ecosystem services. Proceedings of the National Academy of Sciences, 105(28), 9477.
  • McDowell, N. G., & Allen, C. D. (2015). Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5(7), 669–672.
  • McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences, 112(5), 1458–1463.
  • Merino, A., Balboa, M.A., Soalleiro, R.R., and Álvarez González, J.G. (2005). Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe. Forest Ecology and Management, 207(3), 325–339.
  • Millar, C., & Stephenson, N. L. (2015). Temperate forest health in an era of emerging megadisturbance. Science, 349(823–826), 823–826.
  • Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black, T. A., & Mahecha, M. D. (2017). Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nature Ecology & Evolution, 1(2). doi:10.1038/s41559-016-0048
  • National Forestry and Grassland Administration of China. (2019). China Forest Resources Report (2014-2018). Beijing: China Forestry Publishing House.
  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., … Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993.
  • Pan, Y., McCullough, K., & Hollinger, D. Y. (2018). Forest biodiversity, relationships to structural and functional attributes, and stability in New England forests. Forest Ecosystems, 5(1). doi:10.1186/s40663-018-0132-4
  • Paquette, A., Vayreda, J., Coll, L., Messier, C., & Retana, J. (2018). Climate change could negate positive tree diversity effects on forest Productivity: A study across five climate types in Spain and Canada. Ecosystems, 21(5), 960–970.
  • Pautasso, M., Holdenrieder, O., & Stenlid, J. (2005). Susceptibility to fungal pathogens of forests differing in tree diversity,” in forest diversity and function: Temperate and boreal systems (pp. 263–289). (M. Scherer-Lorenzen, C. Körner, & E. Schulze, eds). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Pei, Y., Lei, P., Xiang, W., Ouyang, S., & Xu, Y. (2018). Effect of stand age on fine root biomass, production and morphology in Chinese fir plantations in subtropical China. Sustainability, 10(7), 2280.
  • Peng, -S.-S., Piao, S., Zeng, Z., Ciais, P., Zhou, L., Li, L. Z. X., … Zeng, H. (2014). Afforestation in China cools local land surface temperature. Proceedings of the National Academy of Sciences, 111(8), 2915–2919.
  • Pillet, M., Joetzjer, E., Belmin, C., Chave, J., Ciais, P., Dourdain, A., … Zhou, S. (2018). Disentangling competitive vs. climatic drivers of tropical forest mortality. Journal of Ecology, 106(3), 1165–1179.
  • Pretzsch, H., Biber, P., Schütze, G., Uhl, E., & Rötzer, T. (2014). Forest stand growth dynamics in central Europe have accelerated since 1870. Nature Communications, 5(1). doi:10.1038/ncomms5967
  • Ren, J., Dai, W., Yang, C., Ma, X., & Zou, C. B. (2018). Physiological regulation of poplar species to experimental warming differs between species with contrasting elevation ranges. New Forests, 49(3), 329–340.
  • Rowland, L., Da Costa, A. C. L., Galbraith, D. R., Oliveira, R. S., Binks, O. J., Oliveira, A. A. R., … Meir, P. (2015). Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528(7580), 119–122.
  • Sato, H., Kobayashi, H., & Delbart, N. (2010). Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM. Forest Ecology and Management, 259(3), 301–311.
  • Seidl, R., Schelhaas, M., & Lexer, M. J. (2011). Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 17(9), 2842–2852.
  • State Forestry Administration of China. Regulations for age-class and age-group division of main tree-species. (2018).
  • Sun, D., Zhang, W., Lin, Y., Liu, Z., Shen, W., Zhou, L., … Fu, S. (2018a). Soil erosion and water retention varies with plantation type and age. Forest Ecology and Management, 422, 1–10.
  • Sun, S., He, C., Qiu, L., Li, C., Zhang, J., & Meng, P. (2018b). Stable isotope analysis reveals prolonged drought stress in poplar plantation mortality of the three-north shelter forest in Northern China. Agricultural and Forest Meteorology, 252, 39–48.
  • Tao, S. L., Guo, Q. H., Li, C., Wang, Z. H., & Fang, J. Y. (2016). Global patterns and determinants of forest canopy height. Ecology, 97(12), 3265–3270.
  • Van de Peer, T., Verheyen, K., Kint, V., Cleemput, E. V., & Muys, B. (2017). Plasticity of tree architecture through interspecific and intraspecific competition in a young experimental plantation. Forest Ecology and Management, 385, 1–9.
  • Wang, D., Fan, J., Jing, P., Cheng, Y., & Ruan, H. (2016). Analyzing the impact of climate and management factors on the productivity and soil carbon sequestration of poplar plantations. Environmental Research, 144, 88–95.
  • Wang, G., Innes, J., Lei, J., Dai, S., & Wu, S. (2007). China’s Forestry Reforms. Science, 318(5856), 1556–1557.
  • Wang, X., Zhao, D., Liu, G., Yang, C., & Teskey, R. O. (2018). Additive tree biomass equations for Betula platyphylla suk. plantations in Northeast China. Annals of Forest Science, 75(1), 1–9.
  • Wolf, A., Ciais, P., Bellassen, V., Delbart, N., Field, C. B., & Berry, J. A. (2011). Forest biomass allometry in global land surface models. Global Biogeochemical Cycles, 25(4), n/a–n/a.
  • Wu, X., Jiang, X., Liu, H., Allen, C., Li, X., Wang, P., … Chen, D. (2020). Forest structure database for plantation forests over China-CPSDv0. doi:10.5281/zenodo.3731928
  • Xu, H., Zhang, Z., Chen, J., Zhu, M., & Kang, M. (2017). Cloudiness regulates gross primary productivity of a poplar plantation under different environmental conditions. Canadian Journal of Forest Research, 47(5), 648–658.
  • Zhang, J., Huang, S., & He, F. (2015). Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences, 112(13), 4009–4014.
  • Zhang, S., Yang, D., Yang, Y., Piao, S., Yang, H., Lei, H., … Fu, B. (2018). Excessive afforestation and soil drying on China’s loess plateau. Journal of Geophysical Research: Biogeosciences, 123(3), 923–935.
  • Zhang, Y., Peng, C., Li, W., Tian, L., Zhu, Q., Chen, H., … Xiao, X. (2016). Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013. Ecological Indicators, 61(2), 404–412.
  • Zhou, G., Liu, S., Li, Z., Zhang, D., Tang, X., Zhou, C., … Mo, J. (2006). Old-growth forests can accumulate carbon in soils. Science, 314(5804), 1417.