2,146
Views
2
CrossRef citations to date
0
Altmetric
Data Article

RockSL: an integrated rock spectral library for better global shared services

, , , &
Pages 191-211 | Received 03 Aug 2021, Accepted 06 Dec 2021, Published online: 31 Jan 2022

References

  • Baldridge, A. M., Hook, S. J., Grove, C. I., & Rivera, G. (2009). The ASTER spectral library version 2.0. Remote Sensing of Environment, 113(4), 711–715.
  • Christensen, P. R., Bandfield, J. L., Hamilton, V. E., Howard, D. A., Lane, M. D., Piatek, J. L., & Stefanov, W. L. (2000). A thermal emission spectral library of rock-forming minerals. Journal of Geophysical Research, 105(E4), 9735–9739.
  • Clark, R. N., King, T. V. V., Klejwa, M., Swayze, G. A., & Vergo, N. (1990). High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research, 95(B8), 12653–12680.
  • Clark, R. N., Swayze, G. A., Gallagher, A. J., King, T. V., & Calvin, W. M. (1993). The U.S. geological survey digital spectral library:version 1(0.2 to 3.0μm). Open File Report.
  • Clark, R. N., Swayze, G. A., Wise, R. A., Live, K. E., Hoefen, T. M., Kokaly, R. F., & Sutley, S. J. (2007). USGS digital spectral library splib06a: U.S. Geological Survey Data Series, 231.
  • Farmer, V. (1974). Mineralogical society monograph 4: The infrared spectra of minerals (pp. 427). London: the Mineralogical Society.
  • Gaffey, S. J. (1986). Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns): Calcite, aragonite, and dolomite. American Mineralogist, 71, 151–162.
  • Goetz, A. F., Vane, G., Solomon, J. E., & Rock, B. N. (1985). Imaging spectrometry for earth remote sensing. Science, 228(4704), 1147–1153.
  • Grove, C. I., Hook, S. J., & Paylor, E. D., II. (1992). Compilation of laboratory reflectance spectra of 160 minerals, 0.4 to 2.5 micrometers. Pasadena, CA: Jet Propulsion Laboratory, NASA.
  • Gupta, R. P. (2003). Remote sensing geology (2nd ed ed., pp. 655). Springer: Berlin, Germany.
  • Hueni, A., Nieke, J., Schopfer, J., Kneubühler, M., & Itten, K. I. (2009). The spectral database specchio for improved long-term usability and data sharing. Computers & Geosciences, 35(3), 557–565.
  • Hunt, G. R., & Salisbury, J. W. (1970). Visible and near-infrared spectra of minerals and rocks: I silicate minerals. Modern Geology, 1, 283–300.
  • Hunt, G. R., & Salisbury, J. W. (1971). Visible and near infrared spectra of minerals and rocks: II. Carbonates. Modern Geology, 2, 23–30.
  • Kahle, A. B., & Goetz, A. F. H. (1981). A data base of geologic field spectra. Proceedings of 15th International symposium on Remote Sensing of Environment. Ann Arbor, Michigan, U.S.
  • Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., … Klein, A. J. (2017). USGS spectral library version 7: U.S. geological survey data series 1035. 61p, March, 2020. https://pubs.usgs.gov/ds/1035/ds1035.pdf
  • Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., & Goetz, A. F. H. (1993). The spectral image processing system (SIPS)‐interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2–3), 145–163.
  • Kruse, F. A. (1994). Imaging spectrometer data analysis-a tutorial. Proceedings of the International Symposium on Spectral Sensing Res, 1, 44–50.
  • Lane, M. D., & Christensen, P. R. (1997). Thermal infrared emission spectroscopy of anhydrous carbonates. Journal of Geophysical Research: Planets, 102(E11), 25581–25592.
  • Lane, M. D., Morris, R. V., Mertzman, S. A., & Christensen, P. R. (2002). Evidence for platy hematite grains in Sinus Meridiani, Mars. Journal of Geophysical Research: Planets, 107(E12), 5126.
  • Legodi, M. A., Waal, D. D., & Potgieter, J. H. (2001). Quantitative Determination of CaCO3 in Cement Blends by FT-IR. Applied Spectroscopy, 55(3), 361–365.
  • Ma, C., Sheng, G. R., Wang, Z. J., & Wang, Z. (2015). Analysis of spectral characteristics for different soils particle sizes. Chinese Journal of Soil Science, 02, 292–298.
  • Mao, Y. C., Ma, B. D., Liu, S. J., Wu, L. X., Zhang, X. X., & Yu, M. L. (2014). Study and validation of a remote sensing model for coal extraction based on reflectance spectrum features. Canadian Journal of Remote Sensing: Journal Canadien, 40(5), 327–335.
  • Mcfadden, F. R., & Hoffer, J. A. (1988). Database management (2 ed.). California, USA: The Benjamin/Cumming's Publishing Company.
  • Mcglone, J. C., & Shufelt, J. A. (1994). Projective and object space geometry for monocular building extraction. Pennsylvania, US: Carnegie Mellon University.
  • Meerdink, S. K., Hook, S. J., Roberts, D. A., & Abbott, E. A. (2019). The ECOSTRESS spectral library version 1.0. Remote Sensing of Environment, 230(111196), 1–8.
  • Michener, W. K., & Brunt, J. W. (2009). Ecological data: design, management and processing (pp. 92–116). Oxford, UK: Wiley-Blackwell Science.
  • Noronha, S., & Nevatia, R. (2001). Detection and modeling of buildings from multiple aerial images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(5), 501–518.
  • Okin, G. S., & Painter, T. H. (2004). Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces. Remote Sensing of Environment, 89(3), 272–280.
  • Pelkey, S. M., Mustard, J. F., Murchie, S., Clancy, R. T., Wolff, M., Smith, M., & Gondet, B. (2007). CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance. Journal of Geophysical Research Planets, 112(E8), 171–178.
  • Peng, W., & Liu, G. (1982). In Zhou, M. S (Eds.).Infrared spectra of minerals (pp. 68–490). Beijing: Science Press.
  • Rasaiah, B. A., Jones, S. D., Bellman, C., Malthus, T. J., & Hueni, A. (2015). Assessing field spectroscopy metadata quality. Remote Sensing, 7(4), 4499–4526.
  • Rasaiah, B., Malthus, T., Jones, S. D., & Bellman, C. (2012). Critical metadata protocols in hyperspectral field campaigns for building robust hyperspectral datasets. In Proceedings of the XXII ISPRS Congress (Vol. 26). Melbourne, Australia.
  • Rybkina, A., Hodson, S., Gvishiani, A., Kabat, P., Krasnoperov, R., Samokhina, O., & Firsova, E. (2018). CODATA and global challenges in data-driven science. Russian Journal of Earth Sciences, 18(4), ES4002.
  • Salisbury, J. W., & Eastes, J. W. (1985). The effect of particle size and porosity on spectral contrast in the mid-infrared. Icarus, 64(3), 586–588.
  • Shanshan, W., Kefa, Z., Nannan, Z., & Wang, J. (2014). Spectral data analysis of rock and mineral in Hatu Western Junggar Region, Xinjiang. Proceedings of the SPIE 9260, Land Surface Remote Sensing, II, 92602V.
  • Song, L., Liu, S. J., Yu, M. L., Mao, Y. C., & Wu, L. X. (2017). A classification method based on the combination of visible, near-infrared and thermal infrared spectrum for coal and gangue distinguishment. Spectroscopy and Spectral Analysis, 37(2), 416–422.
  • Stelle, C. A., Ariza-López, F. J., & Ureña-Cámara, M. A. (2018). Spectral library: A proposal for data model. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, (pp. 7395–7398).
  • Su, L., Li, X., Wang, J., & Tang, S. (2003). Some problems of typical ground object spectral knowledge base construction and spectral service. Advances in Earth Sciences, 2, 185–191.
  • van der Meer, F. D., van der Werff, H. M. A., van Ruitenbeek, F. J. A., Hecker, C. A., Bakker, W. H., Noomen, M. F., … Woldai, T. (2012). Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation & Geoinformation, 14(1), 112–128.
  • van der Meer, F. (2004). Analysis of spectral absorption features in hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 5(1), 55–68.
  • Vignesh, K. M., & Kiran, Y. (2020). Comparative analysis of mineral mapping for hyperspectral and multispectral imagery. Arabian Journal of Geosciences, 13(4), 160.
  • Wang, D., Liu, S. J., Mao, Y. C., Wang, Y., & Tian-Zi, L. I. (2018). A method based on thermal infrared spectrum for analysis of sio_2 content in anshan-type iron. Spectroscopy and Spectral Analysis, 38(7), 2101–2106.
  • Whitaker, S., & Pigford, R. L. (1960). An approach to numerical differentiation of experimental data. Industrial and Engineering Chemistry, 52(2), 185–187.
  • Xie, B. S., Zhou, S. Y., & Wu, L. X. (2020). An integrated mineral spectral library using shared data for hyperspectral remote sensing and geological mapping. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 69–75.
  • Yang, B. (1987). Reflective spectrum features of rocks and ores and their application. Geochimica, 1, 8.
  • Zhang, Y., Xiao, Q., Wen, J., You, D. Q., Dou, B. C., & Tang, Y. (2017). Review on spectral libraries: Progress and application. Journal of Remote Sensing, 21(1), 12–26.
  • Zhong, S. Y., Xiao, Q., Wen, J. G., Zheng, X. M., Ma, M. G., Qu, Y. H., Zheng, K., Chi, T. H.,Tang, Y., You, D. Q., Hao, D. L., Cheng, J., He, M., Jiang, T. Jin, R., Yao, X. J., & Zhao, L. J. (2020). Design and realization of ground object background spectral library for surveying and mapping. Journal of Remote Sensing (Chinese), 24(6), 701–716.
  • Zhou, X., & Zhou., D. (2009). Review of digital ground object spectral library. Spectroscopy and Spectral Analysis, 29(6), 1616–1622.