1,614
Views
4
CrossRef citations to date
0
Altmetric
Original Research Article

Fine-resolution mapping of the circumpolar Arctic Man-made impervious areas (CAMI) using sentinels, OpenStreetMap and ArcticDEM

, , , , &
Pages 196-218 | Received 23 Sep 2021, Accepted 30 Dec 2021, Published online: 02 Feb 2022

References

  • AMAP. (2017). Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017.
  • Arnold, C. L., & Gibbons, C. J. (1996). Impervious surface coverage: The emergence of a key environmental indicator. Journal of the American Planning Association, 62(2), 243–258.
  • Attarchi, S. (2020). Extracting impervious surfaces from full polarimetric SAR images in different urban areas. International Journal of Remote Sensing, 41(12), 4644–4663.
  • Balzter, H., Cole, B., Thiel, C., & Schmullius, C. (2015). Mapping CORINE land cover from sentinel-1A SAR and SRTM digital elevation model data using random forests. Remote Sensing, 7(11), 14876–14898.
  • Bartsch, A., Pointner, G., Ingeman-Nielsen, T., & Lu, W. (2020). Towards circumpolar mapping of arctic settlements and infrastructure based on sentinel-1 and sentinel-2. Remote Sensing, 12(15), 2368.
  • Bartsch, A., Pointner, G., Nitze, I., Efimova, A., Jakober, D., Ley, S., … Schweitzer, P. (2021). Expanding infrastructure and growing anthropogenic impacts along Arctic coasts. Environmental Research Letters, 16(11), 115013.
  • Beamish, A., Raynolds, M. K., Epstein, H., Frost, G. V., Macander, M. J., Bergstedt, H., … Wagner, J. (2020). Recent trends and remaining challenges for optical remote sensing of Arctic tundra vegetation: A review and outlook. Remote Sensing of Environment, 246, 111872.
  • Berger, M., Moreno, J., Johannessen, J. A., Levelt, P. F., & Hanssen, R. F. (2012). ESA’s sentinel missions in support of Earth system science. Remote Sensing of Environment, 120, 84–90.
  • Brown de Colstoun, E. C., Huang, C., Wang, P., Tilton, J. C., Tan, B., Phillips, J., … Wolfe, R. E. (2017). Global Man-made Impervious Surface (GMIS) dataset from landsat. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).
  • Brun, S. E., & Band, L. E. (2000). Simulating runoff behavior in an urbanizing watershed. Computers, Environment and Urban Systems, 24(1), 5–22.
  • Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., … Mills, J. (2015). Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 7–27.
  • Delgado Blasco, J. M., Fitrzyk, M., Patruno, J., Ruiz-Armenteros, A. M., & Marconcini, M. (2020). Effects on the double bounce detection in urban areas based on SAR polarimetric characteristics. Remote Sensing, 12, 1187.
  • Fan, H. C., Zipf, A., Fu, Q., & Neis, P. (2014). Quality assessment for building footprints data on OpenStreetMap. International Journal Of Geographical Information Science, 28(4), 700–719.
  • Feng, Y., Ziegler, A. D., Elsen, P. R., Liu, Y., He, X. Y., Spracklen, D. V., … Zeng, Z. Z. (2021). Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia. Nature Sustainability, 4(10), 892–899.
  • Girres, J. F., & Touya, G. (2010). Quality assessment of the French OpenStreetMap dataset. Transactions in GIS, 14, 435–459.
  • Gong, P., Li, X., Wang, J., Bai, Y., Chen, B., Hu, T., … Zhou, Y. (2020). Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment, 236, 111510.
  • Gong, P., Liu, H., Zhang, M., Li, C., Wang, J., Huang, H., … Song, L. (2019). Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(6), 370–373.
  • Gong, P., Wang, J., Yu, L., Zhao, Y., Zhao, Y., Liang, L., … Chen, J. (2013). Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7), 48.
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27.
  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global change and the ecology of cities. Science (New York, N.Y.), 319(5864), 756–760.
  • Haklay, M., Basiouka, S., Antoniou, V., & Ather, A. (2010). How many volunteers does it take to map an area well? The validity of Linus’ law to volunteered geographic information. The Cartographic Journal, 47(4), 315–322.
  • Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610–621.
  • Hjort, J., Karjalainen, O., Aalto, J., Westermann, S., Romanovsky, V. E., Nelson, F. E., … Luoto, M. (2018). Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nature Communications, 9(1), 5147.
  • Homer, C. G., Huang, C., Yang, L., Wylie, B. K., & Coan, M. (2004). Development of a 2001 national land cover database for the United States. Photogrammetric Engineering And Remote Sensing, 70(7), 829–840.
  • Hu, B., Xu, Y. Y., Huang, X., Cheng, Q. M., Ding, Q., Bai, L. Z., & Li, Y. (2021). Improving urban land cover classification with combined use of sentinel-2 and sentinel-1 imagery. ISPRS International Journal Of Geo-Information, 10(8), 533.
  • Huang, H., Wang, J., Liu, C., Liang, L., Li, C., & Gong, P. (2020). The migration of training samples towards dynamic global land cover mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 161, 27–36.
  • Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use/land cover with sentinel 2 and deep learning. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium (pp. 4704–4707).
  • Lehner, A., Naeimi, V., & Steinnocher, K. (2017). Sentinel-1 for urban areas comparison between automatically derived settlement layers from sentinel-1 data and copernicus high resolution information layers. GISTAM: Proceedings Of The 3rd International Conference On Geographical Information Systems Theory, Applications And Management, Porto, Portugal (pp. 43–49).
  • Li, C. C., Wang, J., Wang, L., Hu, L. Y., & Gong, P. (2014). Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery. Remote Sensing, 6(2), 964–983.
  • Li, X. C., Gong, P., & Liang, L. (2015). A 30-year (1984-2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sensing of Environment, 166, 78–90.
  • Liang, L., Liu, Q., Liu, G., Li, H., & Huang, C. (2019). Accuracy evaluation and consistency analysis of four global land cover products in the arctic region. Remote Sensing, 11, 1396.
  • Lin, Y., Zhang, H., Lin, H., Gamba, P. E., & Liu, X. (2020). Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale. Remote Sensing of Environment, 242, 111757.
  • Liu, C., Huang, H., Hui, F., Zhang, Z., & Cheng, X. (2021). Fine-resolution mapping of pan-arctic lake ice-off phenology based on dense sentinel-2 time series data. Remote Sensing, 13, 2742.
  • Liu, C., Zhang, Q., Luo, H., Qi, S., Tao, S., Xu, H., & Yao, Y. (2019). An efficient approach to capture continuous impervious surface dynamics using spatial-temporal rules and dense Landsat time series stacks. Remote Sensing of Environment, 229, 114–132.
  • Liu, X., Hu, G., Chen, Y., Li, X., Xu, X., Li, S., & Pei, F. (2018). High-resolution multi-temporal mapping of global urban land using landsat images based on the Google earth engine platform. Remote Sensing of Environment, 209, 227–239.
  • Miles, V., & Esau, I. (2017). Seasonal and spatial characteristics of urban heat islands (UHIs) in northern west Siberian Cities. Remote Sensing, 9, 989.
  • Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How many trees in a random forest? In P. Perner (Ed.), Machine learning and data mining in pattern recognition (pp. 154–168). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Parekh, J. R., Poortinga, A., Bhandari, B., Mayer, T., Saah, D., & Chishtie, F. (2021). Automatic detection of impervious surfaces from remotely sensed data using deep learning. Remote Sensing, 13(16), 3166.
  • Raynolds, M. K., Walker, D. A., Ambrosius, K. J., Brown, J., Everett, K. R., Kanevskiy, M., … Webber, P. J. (2014). Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Global Change Biology, 20(4), 1211–1224.
  • Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16083–16088.
  • Sexton, J. O., Song, X.-P., Huang, C., Channan, S., Baker, M. E., & Townshend, J. R. (2013). Urban growth of the Washington, D.C.–Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sensing of Environment, 129, 42–53.
  • Shelestov, A., Lavreniuk, M., Vasiliev, V., Shumilo, L., Kolotii, A., Yailymov, B., … Yailymova, H. (2020). Cloud approach to automated crop classification using sentinel-1 imagery. IEEE Transactions on Big Data, 6(3), 572–582.
  • Slonecker, E. T., Jennings, D. B., & Garofalo, D. (2001). Remote sensing of impervious surfaces: A review. Remote Sensing Reviews, 20(3), 227–255.
  • Smol, J., Pienitz, R., & Douglas, M. (2004). Long-term environmental change in arctic and Antarctic lakes, Springer, Dordrecht.
  • Song, X.-P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560(7720), 639–643.
  • Todar, S. A. S., Attarchi, S., & Osati, K. (2021). Investigation the seasonality effect on impervious surface detection from sentinel-1 and sentinel-2 images using Google earth engine. Advances In Space Research, 68(3), 1356–1365.
  • Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O., Keeling, R. F., & Friedl, M. A. (2020). Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology, 26(2), 807–822.
  • Wang, P., Huang, C., Brown de Colstoun, E. C., Tilton, J. C., & Tan, B. (2017). Global Human Built-up And Settlement Extent (HBASE) dataset from landsat. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).
  • Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117, 34–49.
  • Wilder, B. (2012). Cloud architecture patterns: Using microsoft azure. O’Reilly Media, Inc.
  • Wu, W., Guo, S., & Cheng, Q. (2020). Fusing optical and synthetic aperture radar images based on shearlet transform to improve urban impervious surface extraction. Journal of Applied Remote Sensing, 14(2), 024506.
  • Xu, H. Q. (2010). Analysis of Impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI). Photogrammetric Engineering And Remote Sensing, 76(5), 557–565.
  • Xu, H. (2008). A new index for delineating built-up land features in satellite imagery. International Journal of Remote Sensing, 29(14), 4269–4276.
  • Zhang, H., Lin, H., Li, Y., Zhang, Y., & Fang, C. (2016). Mapping urban impervious surface with dual-polarimetric SAR data: An improved method. Landscape and Urban Planning, 151, 55–63.
  • Zhang, X., Liu, L., Wu, C., Chen, X., Gao, Y., Xie, S., & Zhang, B. (2020). Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth System Science Data, 12(3), 1625–1648.