1,637
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Assessing suspended sediment fluxes with acoustic Doppler current profilers: case study from large rivers in Russia

, , & ORCID Icon
Pages 504-526 | Received 14 Feb 2022, Accepted 22 Aug 2022, Published online: 19 Sep 2022

References

  • Agrawal, Y. C., & Hanes, D. M. (2015). The implications of laser-diffraction measurements of sediment size distributions in a river to the potential use of acoustic backscatter for sediment measurements. Water Resources Research, 51(11), 8854–8867. doi:10.1002/2015WR017268
  • Aleixo, R., Guerrero, M., Nones, M., & Ruther, N. (2020). Applying ADCPs for Long-Term Monitoring of SSC in Rivers. Water Resources Research, 56(1). doi:10.1029/2019WR026087
  • Bityukova, V. R., & Koldobskaya, N. A. (2018). Environmental factors and constraints in the development of the new territory of Moscow (so-called «new Moscow»). Geography, Environment, Sustainability, 11(2), 46–62. doi:10.24057/2071-9388-2018-11-2-46-62
  • Boldt, J. A. (2015). From mobile ADCP to high-resolution SSC; a cross-section calibration tool—proceedings of the 3d Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling, April 19-23, Reno, Nev. 1258–1260. http://acwi.gov/sos/pubs/3rdJFIC/Proceedings.pdf
  • Boldt, J. A., Czuba, J. A., Straub, T. D., Curran, C. A., Szupiany, R. N., & Oberg, K. A. (2012). Estimation of suspended-sediment concentration from down-looking acoustic Doppler current profilers using an acoustic backscatter calibration procedure and MATLAB-based tool—Proceedings of the Hydraulic Measurements and Experimental Methods Conference, August 12-15 , Utah.
  • Bouchez, J., Métivier, F., Lupker, M., et al. (2011). Prediction of depth-integrated fluxes of suspended sediment in the Amazon River: Particle aggregation as a complicating factor. Hydrological Processes, 25, 778–794. doi:10.1002/hyp.7868
  • Buffin-Bélanger, T., Roy, A. G., & Kirkbride, A. D. (2000). On large-scale flow structures in a gravel-bed river. Geomorphology, 32(3–4), 417–435. doi:10.1016/S0169-555X(99)00106-3
  • Chalov, S. R., & Efimov, V. A. (2021). Mechanical composition of suspended sediments: Classifications, characteristics, spatial variability. Vestnik Geography, 4, 91–103.
  • Chalov, S., Golosov, V., Tsyplenkov, A., et al. (2017). A toolbox for sediment budget research in small catchments. Geography, Environment, Sustainability, 10(4), 43–68. doi:10.24057/2071-9388-2017-10-4-43-68
  • Chalov, S. R., Liu, S., Chalov, R. S., et al. (2018). Environmental and human impacts on sediment transport of the largest Asian rivers of Russia and China. Environmental Earth Sciences, 77, 1–14. doi:10.1007/s12665-018-7448-9
  • Chalov, S., Moreido, V., & Ivanov, V. et al. (2022). Assessing suspended sediment fluxes with acoustic doppler current profilers: Case study from large rivers in Russia [Data set]. Zenodo. 10.5281/zenodo.6815844
  • Chalov, S., Moreido, V., Sharapova, E., et al. (2020). Hydrodynamic Controls of Particulate Metals Partitioning Along the Lower Selenga River—Main Tributary of the Lake Baikal. Water, 12(5), 1345. doi:10.3390/w12051345
  • Chen, D., Sun, H. G., & Zhang, Y. (2013). Fractional dispersion equation for sediment suspension. Journal of Hydrology, 491, 13–22. doi:10.1016/j.jhydrol.2013.03.031
  • Collins, A. L., & Walling, D. E. (2007). The storage and provenance of fine sediment on the channel bed of two contrasting lowland permeable catchments, UK. River Research and Applications, 23(4), 429–450. doi:10.1002/rra.992
  • Davis, B. E. (2005). A guide to the proper selection and use of federally approved sediment and water-quality samplers. U.S. Geol. Surv. Open File Rep. 20 http://pubs.usgs.gov/of/2005/1087/pdf/OFR_2005-1087.pdf]
  • Deines, K. L. (1999). Backscatter estimation using broadband acoustic Doppler current profilers. Proceedings of the IEEE Working Conference on Current Measurement. 10.1109/ccm.1999.755249
  • Diplas, P., Kuhnle, R., & Gray, J., et al. (2008). Sediment Transport Measurements. In: M. Garcia, ed. Sedimentation Engineering. American Society of Civil Engineers, Reston, VA, 307-353.
  • Dominguez Ruben, L. G., Szupiany, R. N., Latosinski, F. G., Lopez Weibel, C., Wood, M., & Boldt, J. (2020). Acoustic Sediment Estimation Toolbox (ASET): A software package for calibrating and processing TRDI ADCP data to compute suspended-sediment transport in sandy rivers. Computer and Geosciences, 140, 104499. doi:10.1016/j.cageo.2020.104499
  • Edwards, T. K., & Glysson, G. D. (1999). Field methods for measurement of fluvial sediment. In Techniques of Water-Resources Investigations of the U.S. Geological Survey: Book 3, Application of Hydraulics. Reston, VA: U.S. Geological Survey, 89.
  • Efimov, V. A., Chalov, S. R., & Efimova, L. E., et al. (2019). Impact of mining activities on the surface water quality (case study of Khibiny mountains, Russia). IOP Conference Series: Earth and Environmental Science, Bristol, UK, England.
  • Elçi, Ş., Aydın, R., & Work, P. A. (2009). Estimation of suspended sediment concentration in rivers using acoustic methods. Environmental Monitoring and Assessment, (1–4), 159. doi:10.1007/s10661-008-0627-5
  • Ferguson, R. I., & Church, M. (2004). A Simple Universal Equation for Grain Settling Velocity. Journal of Sedimentary Research, 74(6), 933. doi:10.1306/051204740933
  • García, M. H. (2008). Sediment transport and morphodynamics, chap. 2, In: M. H. García, ed. Sedimentation Engineering: Processes, Measurements, Modeling, and Practice: ASCE Manuals and Reports on Engineering Practice No.110. Reston, Va: American Society of Civil, 21–163.
  • Gartner, J. W. (2004). Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Marine Geology, 211(3–4), 169–187. doi:10.1016/j.margeo.2004.07.001
  • Graf, W. H., & Cellino, M. (2002). Suspension flows in open channels; experimental study. Journal of Hydraulic Research, 40(4), 435–447. doi:10.1080/00221680209499886
  • Gray, J. R., & Gartner, J. W. (2009). Technological advances in suspended-sediment surrogate monitoring. Water Resources Research, 45(4). doi:10.1029/2008WR007063
  • Grishanin, K. V. (1972). Theory of the fluvial process. Transport, Moscow.
  • Guerrero, M., & Federico, V. (2018). Suspended sediment assessment by combining sound attenuation and backscatter measurements – analytical method and experimental validation. Advances in Water Resources, 113, 167–179. doi:10.1016/J.ADVWATRES.2018.01.020
  • Guerrero, M., Rüther, N., Haun, S., & Baranya, S. (2017). A combined use of acoustic and optical devices to investigate suspended sediment in rivers. Advances in Water Resources, 102, 1–12. doi:http://dx.doi.org/10.1016/j.advwatres.2017.01.008
  • Guerrero, M., Szupiany, R. N., & Latosinski, F. (2013). Multifrequency acoustics for suspended sediment studies: An application in the Parana River. Journal of Hydraulic Research, 51(6), 696–707. doi:10.1080/00221686.2013.849296
  • Guy, H. P., Simons, D. B., & Richardson, E. V. (1966). Summary of Alluvial Channel Data from Flume Experiments, 1956-61, 462-I. US Geology Survey, 1–104.
  • Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Aalto, R., Nicholas, A. P., & Best, J. L. (2018). The influence of flow discharge variations on the morphodynamics of a diffluence–confluence unit on a large river. Earth Surface Processes and Landforms, 43(2), 349–362. doi:10.1002/ESP.4204
  • Hanes, D. M. (2012). On the possibility of single-frequency acoustic measurement of sand and clay concentrations in uniform suspensions. Continental Shelf Research, 46, 64–66. doi:10.1016/J.CSR.2011.10.008
  • Hauer, R. F., & Lamberti, G. A. (2017). Methods in Stream Ecology (Vol. 1, p. 506). Ecosystem Structure.
  • Holdaway, G. P., Thorne, P. D., Flatt, D., Jones, S. E., & Prandle, D. (1999). Comparison between ADCP and transmissometer measurements of suspended sediment concentration. Continental Shelf Research, 19(3), 421–441. doi:10.1016/S0278-4343(98)00097-1
  • Horowitz, A. (1985). A primer on trace metal-sediment chemistry. US Geology Survey Water-Supply Paper, 2277, 67.
  • Julien, P. Y. (2010). Erosion and sedimentation. Cambridge, England: Cambridge University Press.
  • Kemp, P., Sear, D., Collins, A., et al. (2011). The impacts of fine sediment on riverine fish. Hydrological Processes, 25(11), 1800–1821. doi:10.1002/hyp.7940
  • Kirillov, P. L., Makhrova, A. G., & Nefedova, T. G. (2019). Current Trends in Moscow Settlement Pattern Development: A Multiscale Approach. Geography, Environment, Sustainability, 12(4), 6–23. doi:10.24057/2071-9388-2019-69
  • Lane, E. W., & Kalinske, A. A. (1941). Engineering calculations of suspended sediment. Eos, Transactions American Geophysical Union, 22(3), 603–607. doi:10.1029/TR022i003p00603
  • Latosinski, F. G., Szupiany, R. N., García, C. M., et al. (2014). Estimation of Concentration and Load of Suspended Bed Sediment in a Large River by Means of Acoustic Doppler Technology. Journal of Hydraulic Engineering, 140(7). doi:10.1061/(ASCE)HY.1943-7900.0000859
  • Latrubesse, E. M. (2008). Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers. Geomorphology, 101(1–2), 130–145. doi:10.1016/j.geomorph.2008.05.035
  • Lehotský, M., Rusnák, M., Kidová, A., & Dudžák, J. (2018). Multitemporal assessment of coarse sediment connectivity along a braided-wandering river. Land Degradation and Development, 29(4), 1249–1261. doi:10.1002/ldr.2870
  • Liu, S., Wang, P., & Wang, T., et al. (2021). Characteristic analysis of organic carbon output and its affecting factors of Arctic rivers in Siberia. Dili Xuebao/acta Geographica Sinica, 76(5), 1065–1077. doi:10.11821/dlxb202105002
  • Lupker, M., France-Lanord, C., & Lavé, J., et al. (2011). A Rouse-based method to integrate the chemical composition of river sediments: Application to the Ganga basin. Journal of Geophysical Research: Earth Surface, 116(F4). 10.1029/2010JF001947
  • Lynds, R. M., Mohrig, D., Hajek, E. A., & Heller, P. L. (2014). Paleoslope reconstruction in sandy suspended-load-dominant rivers. Journal of Sedimentary Research, 84(10), 825. doi:10.2110/jsr.2014.60
  • Moore, S. A., Le, C. J., Hurther, D., & Paquier, A. (2013). Using multi-frequency acoustic attenuation to monitor grain size and concentration of suspended sediment in rivers. The Journal of the Acoustical Society of America, 133(4), 1959. doi:10.1121/1.4792645
  • Mueller, D. S., & Wagner, C. D. (2009). Measuring discharge with acoustic Doppler current profilers from a moving boat. Geological Survey Techniques and Methods, 3–A22.
  • Mullison, J. (2017). Backscatter Estimation Using Broadband Acoustic Doppler Current Profilers. Conference: Hydraulic Measurements & Experimental Methods. Durham, NH., 1–6.
  • Mu, C., Zhang, F., & Chen, X., et al. (2019). Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Research, 161, 54–60. doi:10.1016/j.watres.2019.05.082
  • Nie, S., Sun, H., & Zhang, Y., et al. (2017). Vertical Distribution of Suspended Sediment under Steady Flow: Existing Theories and Fractional Derivative Model. Discrete Dynamics in Nature and Society, ID, 5481531. doi:10.1155/2017/5481531
  • Pomázi, F., & Baranya, S. (2020). Comparative assessment of fluvial suspended sediment concentration analysis methods. Water, 12(3), 873. doi:10.3390/w12030873
  • Rstudio Team. (2019). RStudio: Integrated development for R. RStudio, Inc., Boston MA. RStudio
  • Sakho, I., Dussouillez, P., Delanghe, D., Hanot, B., Raccasi, G., Tal, M. … Radakovitch, O. (2019). Suspended sediment flux at the Rhone River mouth (France) based on ADCP measurements during flood events. Environmental Monitoring and Assessment, 191, 508. doi:10.1007/s10661-019-7605-y
  • Sassi, M. G., Hoitink, A. J. F., & Vermeulen, B. (2012). Impact of sound attenuation by suspended sediment on ADCP backscatter calibrations. Water Resources Research, 48(9). doi:10.1029/2012WR012008
  • Shah-Fairbank, S. C., & Julien, P. Y. (2015). Sediment load calculations from point measurements in sand-bed rivers. International Journal of Sediment Research, 30(1), 1–12. doi:10.1016/S1001-6279(15)60001-4
  • Sievert, C. (2020). Interactive Web-Based Data Visualization with R, plotly, and shiny. NY: Chapman and Hall. doi:10.1201/9780429447273
  • Szupiany, R. N., Amsler, M. L., Parsons, D. R., & Best, J. L. (2009). Morphology, flow structure, and suspended bed sediment transport at two large braid-bar confluences. Water Resources Research, 45(5). doi:10.1029/2008WR007428
  • Szupiany, R. N., Lopez Weibel, C., Guerrero, M., Latosinski, F., Wood, M., Dominguez Ruben, L., & Oberg, K. (2019). Estimating sand concentrations using ADCP-based acoustic inversion in a large fluvial system characterized by bi-modal suspended-sediment distributions. Earth Surface Processes and Landforms, 44(6), 1295–1308. doi:10.1002/esp.4572
  • Szupiany, R. N., Lopez Weibel, C., Latosinki, F., Dominguez Ruben, L., Amsler, M., & Guerrero, M., (2016). Sediment concentration measurements using ADCPs in a large river: Evaluation of acoustic frequency and grain size. In Proceedings of the International Conference on Fluvial Hydraulics. 10.1201/9781315644479-243
  • Tereshina, M., Erina, O., Sokolov, D., et al. (2020). Nutrient dynamics along the Moskva River under heavy pollution and limited self-purification capacity. In: E3S Web of Conferences
  • Thorne, P. D., & Hanes, D. M. (2002). A review of acoustic measurement of small-scale sediment processes. Continental Shelf Research, 22(4), 603–632. doi:10.1016/S0278-4343(01)00101-7
  • Thorne, P. D., & Meral, R. (2008). Formulations for the scattering properties of suspended sandy sediments for use in the application of acoustics to sediment transport processes. Continental Shelf Research, 28(2), 309–317. doi:10.1016/J.CSR.2007.08.002
  • Thorne, P. D., Vincent, C. E., Hardcastle, P. J., Rehman, S., & Pearson, N. (1991). Measuring suspended sediment concentrations using acoustic backscatter devices. Marine Geology, 98(1), 7–16. doi:10.1016/0025-3227(91)90031-X
  • Topping, D. J., & Wright, S. A. (2016). Long-Term continuous acoustical suspended-sediment measurements in rivers – Theory, application, bias, and error. Professional Paper 1823. 10.3133/PP1823
  • Townsend, C. R., Uhlmann, S. S., & Matthaei, C. D. (2008). Individual and combined responses of stream ecosystems to multiple stressors. The Journal of Applied Ecology, 45(6), 1810–1819. doi:10.1111/j.1365-2664.2008.01548.x
  • Turowski, J. M., Rickenmann, D., & Dadson, S. J. (2010). The partitioning of the total sediment load of a river into suspended load and bedload: A review of empirical data. Sedimentology, 57(4), 1126–1146. doi:10.1111/j.1365-3091.2009.01140.x
  • van Rijn, L. C. (2007). Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport. Journal of Hydraulic Engineering, 133(6), 649–667. doi:10.1061/(ASCE)0733-9429(2007)133:6(649)
  • Venditti, J. G., Church, M., Attard, M. E., & Haught, D. (2016). Use of ADCPs for suspended sediment transport monitoring: An empirical approach. Water Resources Research, 52(4), 2715–2736. doi:10.1002/2015WR017348
  • Vihma, T., Uotila, P., & Sandven, S., et al. (2019). Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX). Atmospheric Chemistry and Physics, 19(3), 1941–1970. doi:10.5194/acp-19-1941-2019
  • Walling, D. E. (2006). Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology, 79(3–4), 192–216. doi:10.1016/j.geomorph.2006.06.019
  • Wall, G. R., Nystrom, E. A., & Litten, S. (2006). Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River. New York: Scientific Investigations Report 2006-5055, 26.
  • Wang, Y., Chu, Y. S., Lee, H. J., Han, C. K., & Oh, B. C. L. (2005). Estimation of suspended sediment flux from acoustic Doppler current profiling along the Jinhae Bay entrance. Acta Oceanologica Sinica, 24(2), 16–27.
  • Wang, Y., Gao, S., & Li, K. (2000). A preliminary study on suspended sediment concentration measurements using an ADCP mounted on a moving vessel. Chinese Journal of Liminology and Oceanology, 18(2), 183–189. doi:10.1007/BF02842579
  • Wang, Y., Pan, S., & Wang, H. V. (2006). Measurements and analysis of water discharges and suspended sediment fluxes in Changjiang Estuary. Acta Geographica Sinica – Chinese Edition, 61(1), 35–46. doi:10.11821/xb200601004
  • Wickham, H., Averick, M., & Bryan, J., et al. (2019). Welcome to the Tidyverse. Journal of Open-Source Software 4. 10.21105/joss.01686
  • Wood, M. S., Szupiany, R., Boldt, J., Straub, T., & Domanski, M. (2019). Measuring suspended sediment in sand-bedded rivers using down-looking acoustic Doppler current profilers. Proceedings of the SEDHYD 2019 Conference on Sedimentation and Hydrologic Modeling, June 24-28. Reno, 16 p.
  • Zheng, J., Li, R., & Feng, Q. (2012). Vertical distribution of nearshore sediment concentration. Applied Mechanics and Materials, 170–173, 2272–2275.
  • Zheng, J., Li, R., Feng, Q., & Lu, S. (2013). Vertical profiles of fluid velocity and suspended sediment concentration in nearshore. International Journal of Sediment Research, 28(3), 406–412. doi:10.1016/S1001-6279(13)60050-5