1,102
Views
0
CrossRef citations to date
0
Altmetric
Original Research Article

Generating high-resolution climatological precipitation data using SinGAN

ORCID Icon &
Pages 81-100 | Received 28 May 2022, Accepted 24 Oct 2022, Published online: 13 Nov 2022

References

  • Ahmed, K. F., Wang, G., Silander, J., Wilson, A. M., Allen, J. M., Horton, R., & Anyah, R. (2013). Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. northeast. Global and Planetary Change, 100, 320–332. https://doi.org/10.1016/j.gloplacha.2012.11.003
  • Bonan, G. B., & Doney, S. C. (2018). Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 359(6375). https://doi.org/10.1126/science.aam8328
  • Cheng, G., Zhang, F., & Qiang, X. (2020). Super-resolution reconstruction of rock thin-section image based on SinGAN. 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China (pp. 786–790).
  • Chen, X.-W., & Lin, X. (2014). Big data deep learning: Challenges and perspectives. IEEE Access, 2, 514–525. https://doi.org/10.1109/ACCESS.2014.2325029
  • Chen, S.-T., Yu, P.-S., & Tang, Y.-H. (2010). Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385(1–4), 13–22. https://doi.org/10.1016/j.jhydrol.2010.01.021
  • Dong, C., Loy, C. C., He, K., & Tang, X. (2015). Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295–307. https://doi.org/10.1109/TPAMI.2015.2439281
  • Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S., Naik, V., Paulot, F., & Shevliakova, E. (2020). The GFDL Earth System Model version 4.1 (GFDL‐ESM 4.1): Overall coupled model description and simulation characteristics. Journal of Advances in Modeling Earth Systems, 12(11), e2019MS002015. https://doi.org/10.1029/2019MS002015
  • Frey-Buness, F., Heimann, D., & Sausen, R. (1995). A statistical-dynamical downscaling procedure for global climate simulations. Theoretical and Applied Climatology, 50(3), 117–131. https://doi.org/10.1007/BF00866111
  • Gu, S., Zhang, R., Luo, H., Li, M., Feng, H., & Tang, X. (2021). Improved SinGAN integrated with an attentional mechanism for remote sensing image classification. Remote Sensing, 13(9), 1713. https://doi.org/10.3390/rs13091713
  • Hutengs, C., & Vohland, M. (2016). Downscaling land surface temperatures at regional scales with random forest regression. Remote Sensing of Environment, 178, 127–141. https://doi.org/10.1016/j.rse.2016.03.006
  • Huth, R. (2002). Statistical downscaling of daily temperature in central Europe. Journal of Climate, 15(13), 1731–1742. doi:10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2
  • Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. International conference on machine learning, Lille, France, (pp. 448–456).
  • Jetchev, N., Bergmann, U., & Vollgraf, R. (2016). Texture synthesis with spatial generative adversarial networks. arXiv preprint arXiv:1611.08207.
  • Kim, J., Lee, J. K., & Lee, K. M. (2016). Accurate image super-resolution using very deep convolutional networks. Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, Nevada, USA, (pp. 1646–1654).
  • Knyaz, V. A., Kniaz, V. V., & Remondino, F. (2018). Image-to-voxel model translation with conditional adversarial networks. Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany.
  • Ledig, C., Theis, L., & Husza ́r, F. (2017). Photo-realistic single image super-resolution using a generative adversarial network. Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, Hawaii, USA, 4681–4690.
  • Levizzani, V., Bauer, P., & Turk, F. J. (2007). Measuring precipitation from space: EURAINSAT and the future. Springer Science & Business Media.
  • Rocha Rodrigues, E., Oliveira, Igor, Renato and Netto, Marco. (2018). DeepDownscale: A deep learning strategy for high-resolution weather forecast. 2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam, Netherlands, 415–422.
  • Rockel, B., Castro, C. L., Pielke, R. A., von Storch, H., & Leoncini, G. (2008). Dynamical downscaling: Assessment of model system dependent retained and added variability for two different regional climate models. Journal of Geophysical Research: Atmospheres, 113(D21). https://doi.org/10.1029/2007JD009461
  • Schiermeier, Q. (2010). The real holes in climate science. Nature News, 463(7279), 284–287. https://doi.org/10.1038/463284a
  • Shaham, T. R., Dekel, T., Michaeli, T. . (2019). Learning a generative model from a single natural image. ed. Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, South Korea (pp. 4570–4580).
  • Skofronick-Jackson, G., Petersen, W. A., Berg, W., Kidd, C., Stocker, E. F., Kirschbaum, D. B., Kakar, R., Braun, S. A., Huffman, G. J., Iguchi, T., Kirstetter, P. E., Kummerow, C., Meneghini, R., Oki, R., Olson, W. S., Takayabu, Y. N., Furukawa, K., & Wilheit, T. (2017). The Global Precipitation Measurement (GPM) mission for science and society. Bulletin of the American Meteorological Society, 98(8), 1679–1695. https://doi.org/10.1175/BAMS-D-15-00306.1
  • Stengel, K., Glaws, A., Hettinger, D., & King, R. N. (2020). Adversarial super-resolution of climatological wind and solar data. Proceedings of the National Academy of Sciences of the United States of America, 117(29), 16805–16815. https://doi.org/10.1073/pnas.1918964117
  • Sun, W., & Liu, B.-D. (2020). ESinGAN: Enhanced single-image GAN using pixel attention mechanism for image super-resolution. 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China (pp. 181–186).
  • Tank, A., Zwiers, F., & Zhang, Z. (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. World Meteorological Organization.
  • Tian, J., Liu, J., Wang, Y., Wang, W., Li, C., & Hu, C. (2020). A coupled atmospheric–hydrologic modeling system with variable grid sizes for rainfall–runoff simulation in semi-humid and semi-arid watersheds: How does the coupling scale affects the results? Hydrology and Earth System Sciences, 24(8), 3933–3949. https://doi.org/10.5194/hess-24-3933-2020
  • Vandal, T., Kodra, Evan, Ganguly, Sangram, Michaelis, Andrew, Nemani, Ramakrishna and Ganguly, Auroop R. (2017). Deepsd: Generating high resolution climate change projections through single image super-resolution. Proceedings of the 23rd acm sigkdd international conference on knowledge discovery and data mining, Halifax, NS, Canada, 1663–1672.
  • Wamsler, C., Brink, E., & Rivera, C. (2013). Planning for climate change in urban areas: From theory to practice. Journal of Cleaner Production, 50, 68–81. https://doi.org/10.1016/j.jclepro.2012.12.008
  • Wang, X., Yu, Ke. Wu, Shixiang, Gu, Jinjin. Liu, Yihao. Dong, Chao. Qiao, Yu and Change Loy Chen. (2018). Esrgan: Enhanced super-resolution generative adversarial networks. Proceedings of the European conference on computer vision (ECCV) workshops, Munich, Germany.
  • Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C., Main, J., & Wilks, D. S. (1998). Statistical downscaling of general circulation model output: A comparison of methods. Water Resources Research, 34(11), 2995–3008. https://doi.org/10.1029/98WR02577
  • Xinwei, L., Jinlin, Guo, Jinshen, Dou and Songyang, Lao (2021). Generating constrained multi-target scene images using conditional SinGAN. 2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi'an, China, 557–561.
  • Yang, Y., Cao, C., Pan, X., Li, X., & Zhu, X. (2017). Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression. Remote Sensing, 9(8), 789. https://doi.org/10.3390/rs9080789
  • Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J.-H., & Liao, Q. (2019). Deep learning for single image super-resolution: A brief review. IEEE Transactions on Multimedia, 21(12), 3106–3121. https://doi.org/10.1109/TMM.2019.2919431
  • Zhang, B., Xu, G., Jiao, L., Liu, J., Dong, T., Li, Z., Liu, X., & Liu, Y. (2019). The scale effects of the spatial autocorrelation measurement: Aggregation level and spatial resolution. International Journal of Geographical Information Science, 33(5), 945–966. https://doi.org/10.1080/13658816.2018.1564316