3,769
Views
7
CrossRef citations to date
0
Altmetric
Data Article

The first high spatial resolution multi-scale daily SPI and SPEI raster dataset for drought monitoring and evaluating over China from 1979 to 2018Open Data

ORCID Icon, , , , , , , & ORCID Icon show all
Pages 860-885 | Received 13 May 2022, Accepted 03 Nov 2022, Published online: 03 Jan 2023

References

  • Beguería, S., Vicente-Serrano, S., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10), 3001–3023. https://doi.org/10.1002/joc.3887
  • Brown, J. F., Wardlow, B. D., Tadesse, T., Hayes, M. J., & Reed, B. C. (2008). The vegetation drought response index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GIScience & Remote Sensing, 45(1), 16–46. https://doi.org/10.2747/1548-1603.45.1.16
  • Chen, S., Gan, T. Y., Tan, X., Shao, D., & Zhu, J. (2019). Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China. Climate Dynamics, 53(1), 737–757. https://doi.org/10.1007/s00382-018-04611-1
  • Chen, Y., Liang, S., Ma, H., Li, B., He, T., & Wang, Q. (2021). An all-sky 1 km daily land surface air temperature product over mainland China for 2003–2019 from MODIS and ancillary data. Earth System Science Data, 13(8), 4241–4261. https://doi.org/10.5194/essd-13-4241-2021
  • Chen, H., & Sun, J. (2017). Characterizing present and future drought changes over eastern China. International Journal of Climatology, 37, 138–156. https://doi.org/10.1002/joc.4987
  • Chen, W. Z. E. A., Zhu, D., Huang, C., Ciais, P., Yao, Y., Friedlingstein, P., Sitch, S., Haverd, V., Jain, A. K., Kato, E., Kautz, M., Lienert, S., Lombardozzi, D., Poulter, B., Tian, H., Vuichard, N., Walker, A. P., & Zeng, N. (2019). Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agricultural and Forest Meteorology, 275, 47–58. https://doi.org/10.1016/j.agrformet.2019.05.002
  • Dabanlı, İ., Mishra, A. K., & Şen, Z. (2017). Long-term spatio-temporal drought variability in Turkey. Journal of Hydrology, 552, 779–792. https://doi.org/10.1016/j.jhydrol.2017.07.038
  • Deng, H., Tang, Q., Yun, X., Tang, Y., Liu, X., Xu, X., Sun, S., Zhao, G., Zhang, Y., & Zhang, Y. (2022). Wetting trend in Northwest China reversed by warmer temperature and drier air. Journal of Hydrology, 613, 128435. https://doi.org/10.1016/j.jhydrol.2022.128435
  • Feng, Y., & Zhao, X. (2015). Changes in spatiotemporal pattern of precipitation over China during 1980–2012. Environmental Earth Sciences, 73(4), 1649–1662. https://doi.org/10.1007/s12665-014-3517-x
  • Haile, G. G., Tang, Q., Hosseini-Moghari, S.-M., Liu, X., Gebremicael, T. G., Leng, G., Kebede, A., Xu, X., & Yun, X. (2020). Projected impacts of climate change on drought patterns over East Africa. Earth’s Future, 8(7), e2020EF001502. https://doi.org/10.1029/2020EF001502
  • Hao, Z., Li, W., Singh, V. P., Xia, Y., Zhang, X., & Hao, F. (2020). Impact of dependence changes on the likelihood of hot extremes under drought conditions in the United States. Journal of Hydrology, 581, 124410. https://doi.org/10.1016/j.jhydrol.2019.124410
  • Hao, Z. C., & Singh, V. P. (2015). Drought characterization from a multivariate perspective: A review. Journal of Hydrology, 527, 668–678. https://doi.org/10.1016/j.jhydrol.2015.05.031
  • Hao, Z. C., Singh, V. P., & Xia, Y. L. (2018). Seasonal drought prediction: Advances, challenges, and future prospects. Reviews of Geophysics, 56(1), 108–141. https://doi.org/10.1002/2016rg000549
  • Hargreaves, G. H., & Samani, Z. A. (1982). Estimating Potential Evapotranspiration. Journal of the Irrigation and Drainage Division, 108(3), 225–230. https://doi.org/10.1061/JRCEA4.0001390
  • He, J., Yang, K., Tang, W., Lu, H., Qin, J., Chen, Y., & Li, X. (2020). The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 7(1), 25. https://doi.org/10.1038/s41597-020-0369-y
  • Jin, H., Chen, X., Zhong, R., Wu, P., & Li, D. (2021). Spatio-temporal changes of precipitation in the Hanjiang River Basin under climate change. Theoretical and Applied Climatology, 146(3), 1441–1458. https://doi.org/10.1007/s00704-021-03801-y
  • Kayiranga, A., Chen, B., Zhang, H., Nthangeni, W., Measho, S., & Ndayisaba, F. (2021). Spatially explicit and multiscale ecosystem shift probabilities and risk severity assessments in the greater Mekong subregion over three decades. The Science of the Total Environment, 798, 149281. https://doi.org/10.1016/j.scitotenv.2021.149281
  • Kendall, M. G. (Ed.). (1948). Rank correlation methods. In Rank correlation methods. Griffin. 146–163.
  • Khadka, D., Babel, M. S., Shrestha, S., Virdis, S. G. P., & Collins, M. (2021). Multivariate and multi-temporal analysis of meteorological drought in the northeast of Thailand. Weather and Climate Extremes, 34, 100399. https://doi.org/10.1016/j.wace.2021.100399
  • Koutroulis, A., Vrochidou, A.-E., & Tsanis, I. (2010). Spatiotemporal characteristics of meteorological drought for the island of crete. Journal of Hydrometeorology, 12(2), 206–226. https://doi.org/10.1175/2010JHM1252.1
  • Leng, S., Huete, A., Cleverly, J., Yu, Q., Zhang, R., & Wang, Q. (2022). Spatiotemporal variations of dryland vegetation phenology revealed by satellite-observed fluorescence and greenness across the North Australian tropical transect. Remote Sensing, 14(13), 2985. https://doi.org/10.3390/rs14132985
  • Li, X., He, B., Quan, X., Liao, Z., & Bai, X. (2015). Use of the Standardized Precipitation Evapotranspiration Index (SPEI) to characterize the drying trend in Southwest China from 1982–2012. Remote Sensing, 7(8), 10917–10937. https://doi.org/10.3390/rs70810917
  • Li, X., & Huang, W.-R. (2021). How long should the pre-existing climatic water balance be considered when capturing short-term wetness and dryness over China by using SPEI? The Science of the Total Environment, 786, 147575. https://doi.org/10.1016/j.scitotenv.2021.147575
  • Lin, K. H. E., Wang, P. K., Pai, P. L., Lin, Y. S., & Wang, C. W. (2020). Historical droughts in the Qing dynasty (1644–1911) of China. Climate of the Past, 16(3), 911–931. https://doi.org/10.5194/cp-16-911-2020
  • Li, L., She, D., Zheng, H., Lin, P., & Yang, Z.-L. (2020). Elucidating diverse drought characteristics from two meteorological drought indices (SPI and SPEI) in China. Journal of Hydrometeorology, 21(7), 1513–1530. https://doi.org/10.1175/JHM-D-19-0290.1
  • Liu, X. F., Feng, X. M., Ciais, P., Fu, B. J., Hu, B. Y., & Sun, Z. L. (2020). GRACE satellite-based drought index indicating increased impact of drought over major basins in China during 2002–2017. Agricultural and Forest Meteorology, 291, 11. https://doi.org/10.1016/j.agrformet.2020.108057
  • Ma, Z., Kang, S., Zhang, L., Tong, L., & Su, X. (2008). Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. Journal of Hydrology, 352(3), 239–249. https://doi.org/10.1016/j.jhydrol.2007.12.022
  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259. https://doi.org/10.2307/1907187
  • Martí, P., Zarzo, M., Vanderlinden, K., & Girona, J. (2015). Parametric expressions for the adjusted Hargreaves coefficient in Eastern Spain. Journal of Hydrology, 529, 1713–1724. https://doi.org/10.1016/j.jhydrol.2015.07.054
  • Mckee, T., Doesken, N., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. American Meteorological Society.
  • Mckee, T., Doesken, N., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. 179–184.
  • Moravec, V., Markonis, Y., Rakovec, O., Svoboda, M., Trnka, M., Kumar, R., & Hanel, M. (2021). Europe under multi-year droughts: How severe was the 2014–2018 drought period? Environmental Research Letters, 16(3), 13. https://doi.org/10.1088/1748-9326/abe828
  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — a discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • Palmer, W. C. (1965). Meteorological drought. n. 30: US Department of Commerce,
  • Parajuli, P. (2012). Comparison of potential bio-energy feedstock production and water quality impacts using a modeling approach. Journal of Water Resource and Protection, 4(09), 763–771. https://doi.org/10.4236/jwarp.2012.49087
  • Patel, N. R., Chopra, P., & Dadhwal, V. K. (2007). Analyzing spatial patterns of meteorological drought using standardized precipitation index. Meteorological Applications, 14(4), 329–336. https://doi.org/10.1002/met.33
  • Paulo, A. A., Rosa, R. D., & Pereira, L. S. (2012). Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat Hazards Earth Syst Sci, 12(5), 1481–1491. https://doi.org/10.5194/nhess-12-1481-2012
  • Peng, J., Dadson, S., Hirpa, F., Dyer, E., Lees, T., Miralles, D. G., Vicente-Serrano, S. M., & Funk, C. (2020). A pan-African high-resolution drought index dataset. Earth System Science Data, 12(1), 753–769. https://doi.org/10.5194/essd-12-753-2020
  • Penman, H. L., & Keen, B. A. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 193(1032), 120–145. https://doi.org/10.1098/rspa.1948.0037
  • Qi, J., Zhang, X., & Wang, Q. (2019). Improving hydrological simulation in the Upper Mississippi River Basin through enhanced freeze-thaw cycle representation. Journal of Hydrology, 571, 605–618. https://doi.org/10.1016/j.jhydrol.2019.02.020
  • Russo, S., Dosio, A., Sterl, A., Barbosa, P., & Vogt, J. (2013). Projection of occurrence of extreme dry-wet years and seasons in Europe with stationary and nonstationary Standardized Precipitation Indices. Journal of Geophysical Research-Atmospheres, 118(14), 7628–7639. https://doi.org/10.1002/jgrd.50571
  • Sen, Sen, P. K., & Kumar, P. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Publications of the American Statal Association, 63(324), 1379–1389. https://doi.org/10.2307/2285891
  • Spinoni, J., Barbosa, P., De Jager, A., Mccormick, N., Naumann, G., Vogt, J. V., Magni, D., Masante, D., & Mazzeschi, M. (2019). A new global database of meteorological drought events from 1951 to 2016. Journal of Hydrology: Regional Studies, 22, 100593. https://doi.org/10.1016/j.ejrh.2019.100593
  • Stagge, J. H., Tallaksen, L. M., Gudmundsson, L., Loon, A. F. V., & Stahl, K. (2013). Candidate distributions for climatological drought indices (SPI and SPEI). International Journal of Climatology, 35(13), 4027–4040. https://doi.org/10.1002/joc.4267
  • Tabari, H., Hosseinzadehtalaei, P., Thiery, W., & Willems, P. (2021). Amplified drought and flood risk under future socioeconomic and climatic change. Earth’s Future, 9(10), e2021EF002295. https://doi.org/10.1029/2021EF002295
  • Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. Springer. https://doi.org/10.1007/978-94-011-2546-8_20
  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Soil science, 66(1), 55–94. https://doi.org/10.1097/00010694-194807000-00007
  • Tomer, M. D., & Schilling, K. E. (2009). A simple approach to distinguish land-use and climate-change effects on watershed hydrology. Journal of Hydrology, 376(1), 24–33. https://doi.org/10.1016/j.jhydrol.2009.07.029
  • Tsakiris, G., Pangalou, D., & Vangelis, H. (2007). Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resources Management, 21(5), 821–833. https://doi.org/10.1007/s11269-006-9105-4
  • Vangelis, H., Tigkas, D., & Tsakiris, G. (2013). The effect of PET method on Reconnaissance Drought Index (RDI) calculation. Journal of Arid Environments, 88, 130–140. https://doi.org/10.1016/j.jaridenv.2012.07.020
  • Vicente-Serrano, S., & Beguería, S. (2015). Comment on ‘Candidate distributions for climatological drought indices (SPI and SPEI)’ by James H. Stagge et al. Stagge et al. International Journal of Climatology, 36(4), 2120–2131. https://doi.org/10.1002/joc.4474
  • Vicente-Serrano, S. M., Begueria, S., & Lopez-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009jcli2909.1
  • Wang, Q. E. A. (2014). Temporal-spatial characteristics of severe drought events and their impact on agriculture on a global scale. Quaternary International, 349, 10–21. https://doi.org/10.1016/j.quaint.2014.06.021
  • Wang, Q., Qi, J., Li, J., Cole, J., Waldhoff, S. T., & Zhang, X. (2020). Nitrate loading projection is sensitive to freeze-thaw cycle representation. Water Research, 186, 116355. https://doi.org/10.1016/j.watres.2020.116355
  • Wang, Q., Qi, J., Qiu, H., Li, J., Cole, J., Waldhoff, S., & Zhang, X. (2021). Pronounced increases in future soil erosion and sediment deposition as influenced by Freeze–Thaw cycles in the Upper Mississippi River Basin. Environmental Science & Technology, 55(14), 9905–9915. https://doi.org/10.1021/acs.est.1c02692
  • Wang, Q., Qi, J., Wu, H., Zeng, Y., Shui, W., Zeng, J., & Zhang, X. (2020). Freeze-Thaw cycle representation alters response of watershed hydrology to future climate change. CATENA, 195, 104767. https://doi.org/10.1016/j.catena.2020.104767
  • Wang, Q., Shi, P., Lei, T., Geng, G., Liu, J., Mo, X., Li, X., Zhou, H., & Wu, J. (2015). The alleviating trend of drought in the Huang-Huai-Hai Plain of China based on the daily SPEI. International Journal of Climatology, 35(13), 3760–3769. https://doi.org/10.1002/joc.4244
  • Wang, Q., Wu, J., Li, X., Zhou, H., Yang, J., Geng, G., An, X., Liu, L., & Tang, Z. (2017). A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model. International Journal of Biometeorology, 61(4), 685–699. https://doi.org/10.1007/s00484-016-1246-4
  • Wang, Q., Zeng, J., Qi, J., Zhang, X., Zeng, Y., Shui, W., Xu, Z., Zhang, R., Wu, X., & Cong, J. (2021). A multi-scale daily SPEI dataset for drought characterization at observation stations over mainland China from 1961 to 2018. Earth System Science Data, 13(2), 331–341. https://doi.org/10.5194/essd-13-331-2021
  • Wang, Q., Zhang, R., Qi, J., Zeng, J., Wu, J., Shui, W., Wu, X., & Li, J. (2022). An improved daily standardized precipitation index dataset for mainland China from 1961 to 2018. Scientific Data, 9(1), 124. https://doi.org/10.1038/s41597-022-01201-z
  • Wang, W., Zhu, Y., Xu, R., & Liu, J. (2015). Drought severity change in China during 1961–2012 indicated by SPI and SPEI. Natural Hazards, 75(3), 2437–2451. https://doi.org/10.1007/s11069-014-1436-5
  • Wilcox, K. R. E. A., Koerner, S. E., Hoover, D. L., Borkenhagen, A. K., Burkepile, D. E., Collins, S. L., Hoffman, A. M., Kirkman, K. P., Knapp, A. K., Strydom, T., Thompson, D. I., & Smith, M. D. (2020). Rapid recovery of ecosystem function following extreme drought in a South African savanna grassland. Ecology, 101(4), e02983. https://doi.org/10.1002/ecy.2983
  • Wu, Z. Y., Lu, G. H., Wen, L., & Lin, C. A. (2011). Reconstructing and analyzing China’s fifty-nine year (1951–2009) drought history using hydrological model simulation. Hydrology and Earth System Sciences, 15(9), 2881–2894. https://doi.org/10.5194/hess-15-2881-2011
  • Wu, X., Zhang, R., Bento, V. A., Leng, S., Qi, J., Zeng, J., & Wang, Q. (2022). The effect of drought on vegetation gross primary productivity under different vegetation types across China from 2001 to 2020. Remote Sensing, 14(18), 4658. https://doi.org/10.3390/rs14184658
  • Yao, N., Li, Y., Lei, T., & Peng, L. (2018). Drought evolution, severity and trends in mainland China over 1961–2013. The Science of the Total Environment, 616-617, 73–89. https://doi.org/10.1016/j.scitotenv.2017.10.327
  • Yuan, W. E. A., Cai, W., Chen, Y., Liu, S., Dong, W., Zhang, H., Yu, G., Chen, Z., He, H., Guo, W., Liu, D., Liu, S., Xiang, W., Xie, Z., Zhao, Z., & Zhou, G. (2016). Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Scientific reports, 6(1), 18813. https://doi.org/10.1038/srep18813
  • Zargar, A., Sadiq, R., Naser, B., & Khan, F. I. (2011). A review of drought indices. Environmental Review, 19(NA), 333–349. https://doi.org/10.1139/a11-013
  • Zeng, J., Zhang, R., Lin, Y., Wu, X., Tang, J., Guo, P., Li, J., & Wang, Q. (2020). Drought frequency characteristics of China, 1981-2019, based on the vegetation health index. Climate Research, 81, 131–147. https://doi.org/10.3354/cr01616
  • Zeng, J., Zhang, R., Qu, Y., Bento, V. A., Zhou, T., Lin, Y., Wu, X., Qi, J., Shui, W., & Wang, Q. (2022). Improving the drought monitoring capability of VHI at the global scale via ensemble indices for various vegetation types from 2001 to 2018. Weather and Climate Extremes, 35, 100412. https://doi.org/10.1016/j.wace.2022.100412
  • Zhang, R., Bento, V. A., Junyu, Q., Feng, X., & Wang, Q. (2022). The first high spatial resolution multi-scale daily SPI and SPEI raster dataset over China from 1979 to 2018. FIGSHARE.
  • Zhang, R., Qi, J., Leng, S., & Wang, Q. (2022). Long-Term vegetation phenology changes and responses to preseason temperature and precipitation in Northern China. Remote Sensing, 14(6), 1396. https://doi.org/10.3390/rs14061396
  • Zhang, R., Wu, X., Zhou, X., Ren, B., Zeng, J., & Wang, Q. (2022c). Investigating the effect of improved drought events extraction method on spatiotemporal characteristics of drought. Theoretical and Applied Climatology, 147(1), 395–408. https://doi.org/10.1007/s00704-021-03838-z
  • Zhao, R., Wang, H., Zhan, C., Hu, S., Ma, M., & Dong, Y. (2020). Comparative analysis of probability distributions for the Standardized Precipitation Index and drought evolution in China during 1961–2015. Theoretical and Applied Climatology, 139(3), 1363–1377. https://doi.org/10.1007/s00704-019-03050-0
  • Zhou, Z. (2016). Machine Learning. Tsinghua University Press.
  • Zuo, D. E. A., Han, Y., Xu, Z., Li, P., Ban, C., Sun, W., Pang, B., Peng, D., Kan, G., Zhang, R., & Yang, H. (2021). Time-lag effects of climatic change and drought on vegetation dynamics in an alpine river basin of the Tibet Plateau, China. Journal of Hydrology, 600, 126532. https://doi.org/10.1016/j.jhydrol.2021.126532
  • Zuo, D., Xu, Z., Yao, W., Jin, S., Xiao, P., & Ran, D. (2016). Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. The Science of the Total Environment, 544, 238–250. https://doi.org/10.1016/j.scitotenv.2015.11.060