630
Views
1
CrossRef citations to date
0
Altmetric
Editorial

Observations and geophysical value-added datasets for cold high mountain and polar regions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Chalov, S., Moreido, V., Ivanov, V., et al. (2022). Assessing suspended sediment fluxes with acoustic Doppler current profilers: Case study from large rivers in Russia. Big Earth Data. 6(4), 381–384. https://doi.org/10.1080/20964471.2022.2116834
  • Duan, A., Liu, S., Wenting, H., et al. (2022). Long-term daily dataset of surface sensible heat flux and latent heat release over the Tibetan Plateau based on routine meteorological observations. Big Earth Data, 6(4), 1–12. https://doi.org/10.1080/20964471.2022.2037203
  • Group on Earth Observations (GEO). (2022) 2023-2025 GEO work programme. GEO-18-7.3, GEO-18–2-3. November. https://earthobservations.org/documents/geoweek2022/GEO-18-7.3_2023-2025%20Work%20Programme.pdf
  • Guo, H. (2018). Steps to the digital Silk Road. Nature, 554(7690), 25–27. https://doi.org/10.1038/d41586-018-01303-y
  • Guo, H., Li, X., & Qiu, Y. (2020). Comparison of global change at Earth’s “three poles” using spaceborne Earth observation. Science Bulletin, 4. https://doi.org/10.1016/j.scib.2020.04.031
  • Hu, Z., Kuenzer, C., Dietz, A. J., et al. (2017). The potential of earth observation for the analysis of cold region land surface dynamics in Europe—A review. Remote Sensing, 9, 1067. https://doi.org/10.3390/rs9101067
  • Jiang, L., Yang, J., Zhang, C., et al. (2022). Daily snow water equivalent product with SMMR, SSM/I and SSMIS from 1980 to 2020 over China. Big Earth Data, 6(4), 1–15. https://doi.org/10.1080/20964471.2022.2032998
  • Kulmala, M. T. (2018). Build a global Earth observatory. Nature, 553(7686), 21–23. https://doi.org/10.1038/d41586-017-08967-y
  • Lappalainen, H. K., Petäjä, T., Vihma, T., et al. (2022). Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 22(7), 4413–4469. https://doi.org/10.5194/acp-22-4413-2022
  • Lhakpa, D., Qiu, Y., Lhak, P., et al. (2022). Long-term records of glacier evolution and associated proglacial lakes on the Tibetan Plateau (1976‒2020). Big Earth Data, 6(4), 1–18. https://doi.org/10.1080/20964471.2022.2131956
  • Liang, D., Guo, H., Zhang, L., et al. (2021): Sentinel-1 EW mode dataset for Antarctica from 2014–2020 produced by the CASEarth cloud service platform. Big Earth Data, 6(4), 1–16. https://doi.org/10.1080/20964471.2021.1976706
  • Li, X., Che, T., LI, X., et al. (2020). CASEarth Poles - Big data for the three poles. Bulletin of the American Meteorological Society the bulletin of the American Meteorological Society, 3(9), E1475–1491. https://doi.org/10.1175/BAMS-D-19-0280.1
  • Petäjä, T., Duplissy, E., Tabakova, K., et al. (2020). Overview: Integrative and Comprehensive Understanding on Polar Environments (iCUPE)–concept and initial results. Atmospheric Chemistry and Physics, 20(14), 8551–8592. https://doi.org/10.5194/acp-20-8551-2020
  • Pirazzini, R., Tjernström, M., Sandven, S., et al. (2020). INTAROS synthesis of gap analysis of the existing Arctic observing systems. EGU General Assembly 2020, Online 4–8 May 2020, EGU2020–20091. https://doi.org/10.5194/egusphere-egu2020-20091
  • Pulliainen, J., Cheng, B., & Qiu, Y. (2019). Sustainable earth observations for the Arctic, the Antarctic and the high-altitude mountain cold regions. International Journal of Digital Earth, 12(8), 858–859. https://doi.org/10.1080/17538947.2019.1633737
  • Qiu, Y., Massimo, M., Li, X., et al. (2017). Observing and understanding high mountain and cold regions using big earth data. Bulletin of Chinese Academy of Sciences of bulletin of Chinese Academy of Sciences of bulletin of Chinese Academy of Sciences, 32(Z1), 82–94.
  • Qiu, Y., Savela, H., Key, J. R. et al. (2016). Statement on the GEO cold region initiative (GEOCRI). In Arctic observing summit 2016, University of Calgary, Arctic Institute of North America. 2016. https://earthobservations.org/documents/meetings/201603_arctic_summit/201603_arctic_summit_geocri_statement.pdf
  • Sandven, S., Sagen, H., Beszczynska-Möller, A., Vo, P., Houssais, M. -N., Sørensen, M., Sejr, M. K., Dzieciuch, M., Worcester, P., Storheim, E., Geyer, F., & Rønning, B. (4–8 May, 2020). Implementation of a multipurpose Arctic ocean observing system, EGU General Assembly 2020. Online EGU2020-20347. https://doi.org/10.5194/egusphere-egu2020-20347
  • Wang, X., Qiu, Y., Zhang, Y., et al. (2021). A lake ice phenology dataset for the Northern Hemisphere based on passive microwave remote sensing. Big Earth Data. 6(4), 381–384. https://doi.org/10.1080/20964471.2021.1992916
  • Wu, A., Che, T., Li, X., et al. (2021). A ship navigation information service system for the Arctic Northeast Passage using 3D GIS based on big Earth data. Big Earth Data. 6(4), 381–384. https://doi.org/10.1080/20964471.2021.1981197
  • Yao, T., Thompson, L., Chen, D. et al. (2022). Reflections and future strategies for Third Pole Environment. Nat Rev Earth Environ, 3 , 608–610. https://doi.org/10.1038/s43017-022-00342-4
  • Yao, T. D., Thompson, L. G., Mosbrugger, V., et al. (2012). Third Pole Environment (TPE). Environmental Development 3, 52–64. https://doi.org/10.1016/j.envdev.2012.04.002
  • Zhao, J., Cheng, J., Tian, Z., et al. (2021). Snow and ice thicknesses derived from Fast Ice Prediction System Version 2.0 (FIPS V2.0) in Prydz Bay, East Antarctica: Comparison with in-situ observations. Big Earth Data. 6(4), 381–384. https://doi.org/10.1080/20964471.2021.1981196
  • Zhao, T., Cosh, M. H., Roy, A., et al. (2021). Remote sensing experiments for Earth system science. International Journal of Digital Earth, 14(10), 1237–1242. https://doi.org/10.1080/17538947.2021.1977473