3,827
Views
2
CrossRef citations to date
0
Altmetric
Original Research Article

Improving risk reduction potential of weather index insurance by spatially downscaling gridded climate data - a machine learning approach

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 937-960 | Received 29 Dec 2022, Accepted 24 Mar 2023, Published online: 04 Apr 2023

References

  • Abbaszadeh, P., Moradkhani, H., & Zhan, X. (2019). Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resources Research, 55(1), 324–344. https://doi.org/10.1029/2018WR023354
  • Alexakis, D. D., & Tsanis, I. K. (2016). Comparison of multiple linear regression and artificial neural network models for downscaling TRMM precipitation products using MODIS data. Environmental Earth Sciences, 75(14), 1077. https://doi.org/10.1007/s12665-016-5883-z
  • Bai, J., Cui, Q., Zhang, W., & Meng, L. (2019). An approach for downscaling SMAP soil moisture by combining sentinel-1 SAR and MODIS data. Remote Sensing, 11(23), 2736. https://doi.org/10.3390/rs11232736
  • Bartkowiak, P., Castelli, M., & Notarnicola, C. (2019). Downscaling land surface temperature from MODIS dataset with random forest approach over alpine vegetated areas. Remote Sensing, 11(11), 1319. https://doi.org/10.3390/rs11111319
  • Bastola, S., & Misra, V. (2014). Evaluation of dynamically downscaled reanalysis precipitation data for hydrological application. Hydrological Processes, 28(4), 1989–2002. https://doi.org/10.1002/hyp.9734
  • Black, E., Tarnavsky, E., Maidment, R., Greatrex, H., Mookerjee, A., Quaife, T., & Brown, M. (2016). The use of remotely sensed rainfall for managing drought risk: A case study of weather index insurance in Zambia. Remote Sensing, 8(4), 342. https://doi.org/10.3390/rs8040342
  • Bobojonov, I., Aw-Hassan, A., & Sommer, R. (2014). Index-based insurance for climate risk management and rural development in Syria. Climate and Development, 6(2), 166–178. https://doi.org/10.1080/17565529.2013.844676
  • Bobojonov, I., Kuhn, L., Moritz, L., Eltazarov, S., & Glauben, T. (2019). Risk management tested in realistic simulation. Improving climate resilience through agricultural insurance - the KlimALEZ project. In IAMO Annual 2019. https://www.iamo.de/fileadmin/user_upload/Bilder_und_Dokumente/05-publikationen/Annuals/iamo2019_en.pdf
  • Bokusheva, R. (2018). Using copulas for rating weather index insurance contracts. Journal of Applied Statistics, 45(13), 2328–2356. https://doi.org/10.1080/02664763.2017.1420146
  • Bokusheva, R., Kogan, F., Vitkovskaya, I., Conradt, S., & Batyrbayeva, M. (2016). Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses. Agricultural and Forest Meteorology, 220, 200–206. https://doi.org/10.1016/J.AGRFORMET.2015.12.066
  • Brahm, M., Vila, D., Martinez Saenz, S., & Osgood, D. (2019). Can disaster events reporting be used to drive remote sensing applications? A Latin America weather index insurance case study. Meteorological Applications, 26(4), 632–641. https://doi.org/10.1002/met.1790
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Bucheli, J., Dalhaus, T., & Finger, R. (2021). The optimal drought index for designing weather index insurance. European Review of Agricultural Economics, 48(3), 573–597. https://doi.org/10.1093/erae/jbaa014
  • Chen, F., Gao, Y., Wang, Y., Qin, F., & Li, X. (2019). Downscaling satellite-derived daily precipitation products with an integrated framework. International Journal of Climatology, 39(3), 1287–1304. https://doi.org/10.1002/joc.5879
  • Chen, C., Hu, B., & Li, Y. (2021). Easy-to-use spatial random-forest-based downscaling-calibration method for producing precipitation data with high resolution and high accuracy. Hydrology and Earth System Sciences, 25(11), 5667–5682. https://doi.org/10.5194/hess-25-5667-2021
  • Chen, Q., Miao, F., Wang, H., Xu, Z. -X., Tang, Z., Yang, L., & Qi, S. (2020). Downscaling of satellite remote sensing soil moisture products over the Tibetan Plateau based on the random forest algorithm: Preliminary results. Earth and Space Science, 7(6), e2020EA001265. https://doi.org/10.1029/2020EA001265
  • Chu, W., Gao, X., Phillips, T. J., & Sorooshian, S. (2011). Consistency of spatial patterns of the daily precipitation field in the western United States and its application to precipitation disaggregation. Geophysical Research Letters, 38(4). https://doi.org/10.1029/2010GL046473
  • Coleman, E., Dick, W., Gilliams, S., Piccard, I., Rispoli, F., & Stoppa, A. (2018). Remote sensing for index insurance: Findings and lessons learned for smallholder agriculture (Issue ISBN 9789290727729). (Issue ISBN 9789290727729).
  • Collier, B., Skees, J., & Barnett, B. (2009). Weather index insurance and climate change: Opportunities and challenges in lower income countries. Geneva Papers on Risk and Insurance: Issues and Practice, 34(3), 401–424. https://doi.org/10.1057/gpp.2009.11
  • Conradt, S., Finger, R., & Bokusheva, R. (2015). Tailored to the extremes: Quantile regression for index-based insurance contract design. Agricultural Economics (United Kingdom), 46(4), 537–547. https://doi.org/10.1111/agec.12180
  • de Beurs, K. M., Henebry, G. M., Owsley, B. C., & Sokolik, I. N. (2018). Large scale climate oscillation impacts on temperature, precipitation and land surface phenology in Central Asia. Environmental Research Letters, 13(6), 065018. https://doi.org/10.1088/1748-9326/aac4d0
  • Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y. Y., Miralles, D., Lecomte, P. … Lecomte, P. (2017). ESA CCI soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203, 185–215. https://doi.org/10.1016/j.rse.2017.07.001
  • dos Santos, R. S. (2020). Estimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data. International Journal of Applied Earth Observation and Geoinformation, 88, 102066. https://doi.org/10.1016/j.jag.2020.102066
  • Eltazarov, S., Bobojonov, I., Kuhn, L., & Glauben, T. (2021). Mapping weather risk – a multi-indicator analysis of satellite-based weather data for agricultural index insurance development in semi-arid and arid zones of Central Asia. Climate Services, 23, 100251. https://doi.org/10.1016/j.cliser.2021.100251
  • Enenkel, M., Osgood, D., Anderson, M., Powell, B., McCarty, J., Neigh, C., Carroll, M., Wooten, M., Husak, G., Hain, C., & Brown, M. (2018). Exploiting the convergence of evidence in satellite data for advanced weather index insurance design. Weather, Climate, and Society, 11(1), 65–93. https://doi.org/10.1175/WCAS-D-17-0111.1
  • Enenkel, M., Osgood, D., & Powell, B. (2017). The added value of satellite soil moisture for agricultural index insurance. In Remote sensing of hydrometeorological hazards 1st Editio, (pp. 69–83). https://doi.org/10.1201/9781315154947-4
  • Fang, B., Lakshmi, V., Cosh, M., Liu, P. -W., Bindlish, R., & Jackson, T. J. (2022). A global 1-km downscaled SMAP soil moisture product based on thermal inertia theory. Vadose Zone Journal, 21(2), e20182. https://doi.org/10.1002/vzj2.20182
  • FAO. (2015). Climate change and food security: risks and responses. https://www.fao.org/documents/card/en/c/82129a98-8338-45e5-a2cd-8eda4184550f/
  • FAO. (2020). Global Information and Early Warning System (Mongolia). http://www.fao.org/giews/countrybrief/country.jsp?code=MNG&lang=en
  • FAO. (2021). Global Information and Early Warning System (Kyrgyzstan). http://www.fao.org/giews/countrybrief/country.jsp?code=KGZ&lang=en
  • FAO. (2022). FAOSTAT. https://www.fao.org/faostat/
  • Fehér, I., Lehota, J., Lakner, Z., Kende, Z., Bálint, C., Vinogradov, S., & Fieldsend, A. (2017). Kazakhstan’s wheat production potential BT - The Eurasian wheat belt and food security: Global and regional aspects S. Gomez y Paloma, S. Mary, S. Langrell, & P. Ciaian, (Eds.). (pp. 177194). , (Eds.). (pp. 177194). Springer International Publishing. https://doi.org/10.1007/978-3-319-33239-0_11
  • Finger, R. (2013). Investigating the performance of different estimation techniques for crop yield data analysis in crop insurance applications. Agricultural Economics, 44(2), 217–230. https://doi.org/10.1111/agec.12005
  • Fisher, E., Hellin, J., Greatrex, H., & Jensen, N. (2019). Index insurance and climate risk management: Addressing social equity. Development Policy Review, 37(5), 581–602. https://doi.org/10.1111/dpr.12387
  • Friedl, M., & Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD12Q1.006
  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data, 2(1), 150066. https://doi.org/10.1038/sdata.2015.66
  • Giné, X., Menand, L., Townsend, R., & Vickery, J. (2010). Microinsurance: A case study of the Indian rainfall index insurance market. In Policy Research Working Papers. The World Bank. https://doi.org/10.1596/1813-9450-5459
  • Gommes, R., & Göbel, W.2013 Beyond simple, one-station rainfall indices In EC Joint Research Centre (JRC) (Ed.), The challenges of index-based insurance for food security in developing countries (pp. 205–221). International Research Institute for Climate and Society (IRI, Earth Institute, Columbia University)https://op.europa.eu/en/publication-detail/-/publication/d93219f2-252e-48a9-b5de-38d65de16f9a
  • Greatrex, H., Hansen, J., Garvin, S., Diro, R., Blakeley, S., Le Guen, M., Rao, K., & Osgood, D. (2015). Scaling up index insurance for smallholder farmers: Recent evidence and insights. https://hdl.handle.net/10568/53101
  • Haag, I., Jones, P. D., & Samimi, C. (2019). Central asia’s changing climate: How temperature and precipitation have changed across time, space, and altitude. Climate, 7(10), 123. https://doi.org/10.3390/cli7100123
  • Ha, W., Gowda, P. H., & Howell, T. A. (2013). A review of downscaling methods for remote sensing-based irrigation management: Part I. Irrigation Science, 31(4), 831–850. https://doi.org/10.1007/s00271-012-0331-7
  • Hellmuth, M. E., Osgood, D. E., Hess, U., Moorhead, A., & Bhojwani, H. (2009). Index insurance and climate risk: Prospects for development and disaster management. International Research Institute for Climate and Society (IRI).
  • Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Thépaut, J. -N. … Thépaut, J. -N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
  • Hrisko, J., Ramamurthy, P., & Gonzalez, J. E. (2021). Estimating heat storage in urban areas using multispectral satellite data and machine learning. Remote Sensing of Environment, 252, 112125. https://doi.org/10.1016/j.rse.2020.112125
  • Hu, F., Wei, Z., Zhang, W., Dorjee, D., & Meng, L. (2020). A spatial downscaling method for SMAP soil moisture through visible and shortwave-infrared remote sensing data. Journal of Hydrology, 590, 125360. https://doi.org/10.1016/j.jhydrol.2020.125360
  • Im, J., Park, S., Rhee, J., Baik, J., & Choi, M. (2016). Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environmental Earth Sciences, 75(15), 1120. https://doi.org/10.1007/s12665-016-5917-6
  • IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009325844
  • Kath, J., Mushtaq, S., Henry, R., Adeyinka, A. A., Stone, R., Marcussen, T., & Kouadio, L. (2019). Spatial variability in regional scale drought index insurance viability across Australia’s wheat growing regions. Climate Risk Management, 24, 13–29. https://doi.org/10.1016/j.crm.2019.04.002
  • Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46(1), 33–50. https://doi.org/10.2307/1913643
  • Kölle, W., Buchholz, M., & Musshoff, O. (2021). Do high-resolution satellite indices at field level reduce basis risk of satellite-based weather index insurance? Agricultural Finance Review, Ahead-Of-P(ahead-Of-Print), 82(4), 616–640. https://doi.org/10.1108/AFR-12-2020-0177
  • Kölle, W., Martínez Salgueiro, A., Buchholz, M., & Musshoff, O. (2020). Can satellite-based weather index insurance improve the hedging of yield risk of perennial non-irrigated olive trees in Spain?*. The Australian Journal of Agricultural and Resource Economics, 65(1), 66–93. n/a(n/a. https://doi.org/10.1111/1467-8489.12403
  • Konduri, V. S., Vandal, T. J., Ganguly, S., & Ganguly, A. R. (2020). Data science for weather impacts on crop yield. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.00052
  • Liu, Y., Jing, W., Wang, Q., & Xia, X. (2020). Generating high-resolution daily soil moisture by using spatial downscaling techniques: A comparison of six machine learning algorithms. Advances in Water Resources, 141, 103601. https://doi.org/10.1016/j.advwatres.2020.103601
  • Liu, Y., Yang, Y., Jing, W., & Yue, X. (2018). Comparison of different machine learning approaches for monthly satellite-based soil moisture downscaling over Northeast China. Remote Sensing, 10(2), 31. https://doi.org/10.3390/rs10010031
  • López López, P., Immerzeel, W. W., Rodríguez Sandoval, E. A., Sterk, G., & Schellekens, J. (2018). Spatial Downscaling of Satellite-Based Precipitation and Its Impact on Discharge Simulations in the Magdalena River Basin in Colombia. Frontiers in Earth Science, 6, 6. https://doi.org/10.3389/feart.2018.00068
  • Maidment, R. I., Grimes, D., Allan, R. P., Tarnavsky, E., Stringer, M., Hewison, T., Roebeling, R., & Black, E. (2014). The 30 year TAMSAT African rainfall climatology and time series (TARCAT) data set. Journal of Geophysical Research Atmospheres, 119(18), ,10,610–619,644. https://doi.org/10.1002/2014JD021927
  • Mega, T., Ushio, T., Takahiro, M., Kubota, T., Kachi, M., & Oki, R. (2019). Gauge-adjusted global satellite mapping of precipitation. IEEE Transactions on Geoscience and Remote Sensing, 57(4), 1928–1935. https://doi.org/10.1109/TGRS.2018.2870199
  • Möllmann, J., Buchholz, M., & Musshoff, O. (2019). Comparing the hedging effectiveness of weather derivatives based on remotely sensed vegetation health indices and meteorological indices. Weather, Climate, and Society, 11(1), 33–48. https://doi.org/10.1175/WCAS-D-17-0127.1
  • NCEI, N. C. for E. I. (2021). Observational data map of daily weather stations networks from around the world. https://gis.ncdc.noaa.gov/maps/ncei/cdo/daily
  • Ndegwa, M. K., Shee, A., Turvey, C., & You, L. (2022). Sequenced crop evapotranspiration and water requirement in developing a multitrigger rainfall index insurance and risk-contingent credit. Weather, Climate, and Society, 14(1), 19–38. https://doi.org/10.1175/WCAS-D-21-0071.1
  • Novella, N. S., & Thiaw, W. M. (2012). African rainfall climatology version 2 for famine early warning systems. Journal of Applied Meteorology and Climatology, 52(3), 588–606. https://doi.org/10.1175/JAMC-D-11-0238.1
  • Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., Rossi, F., Kozyra, J., & Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34(2), 96–112. https://doi.org/10.1016/j.eja.2010.11.003
  • Ortiz-Bobea, A., Wang, H., Carrillo, C. M., & Ault, T. R. (2019). Unpacking the climatic drivers of US agricultural yields. Environmental Research Letters, 14(6), 064003. https://doi.org/10.1088/1748-9326/ab1e75
  • Osgood, D., McLaurin, M., Carriquiry, M., Mishra, A., Fiondella, F., Hansen, J. W., Peterson, N., & Ward, M. N. (2007). Designing weather insurance contracts for farmers in Malawi, Tanzania and Kenya: Final report to the commodity risk management group. ARD, World Bank. https://doi.org/10.7916/D88P66DJ
  • Osgood, D., Powell, B., Diro, R., Farah, C., Enenkel, M., Brown, M., Husak, G., Blakeley, S., Hoffman, L., & McCarty, J. (2018). Farmer perception, recollection, and remote sensing in weather index insurance: An ethiopia case study. Remote Sensing, 10(12), 1887. https://doi.org/10.3390/rs10121887
  • Paliwal, A., & Jain, M. (2020). The Accuracy of Self-Reported Crop Yield Estimates and Their Ability to Train Remote Sensing Algorithms. Frontiers in Sustainable Food Systems, 4, 4. https://doi.org/10.3389/fsufs.2020.00025
  • Petropoulos, G. P., & Islam, T. (2017). Remote sensing of hydrometeorological hazards. CRC Press. https://doi.org/10.1201/9781315154947
  • Powell, J. P., & Reinhard, S. (2016). Measuring the effects of extreme weather events on yields. Weather and Climate Extremes, 12, 69–79. https://doi.org/10.1016/j.wace.2016.02.003
  • R Development Core Team. (2018) . R: A language and environment for statistical computing. R Foundation for Statistical Computing.
  • Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. -J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & Toll, D. (2004). The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/bams-85-3-381
  • Schierhorn, F., Hofmann, M., Gagalyuk, T., Ostapchuk, I., & Müller, D. (2021). Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages. Climatic Change, 169(3), 39. https://doi.org/10.1007/s10584-021-03272-0
  • Semenov, M. A., & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology, 73(3), 265–283. https://doi.org/10.1016/0168-1923(94)05078-K
  • Seyyedi, H., Anagnostou, E. N., Beighley, E., & McCollum, J. (2014). Satellite-driven downscaling of global reanalysis precipitation products for hydrological applications. Hydrology and Earth System Sciences, 18(12), 5077–5091. https://doi.org/10.5194/hess-18-5077-2014
  • Shamanin, V., Salina, E., Wanyera, R., Zelenskiy, Y., Olivera, P., & Morgounov, A. (2016). Genetic diversity of spring wheat from Kazakhstan and Russia for resistance to stem rust Ug99. Euphytica, 212(2), 287–296. https://doi.org/10.1007/s10681-016-1769-0
  • Sharifi, E., Saghafian, B., & Steinacker, R. (2019). Downscaling satellite precipitation estimates with multiple linear regression, artificial neural networks, and spline interpolation techniques. Journal of Geophysical Research Atmospheres, 124(2), 789–805. https://doi.org/10.1029/2018JD028795
  • Shen, Z., & Yong, B. (2021). Downscaling the GPM-based satellite precipitation retrievals using gradient boosting decision tree approach over China. Journal of Hydrology, 602, 126803. https://doi.org/10.1016/j.jhydrol.2021.126803
  • Srivastava, P. K., Han, D., Ramirez, M. R., & Islam, T. (2013). Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resources Management, 27(8), 3127–3144. https://doi.org/10.1007/s11269-013-0337-9
  • Tang, K., Zhu, H., & Ni, P. (2021). Spatial downscaling of land surface temperature over heterogeneous regions using random forest regression considering spatial features. Remote Sensing, 13(18), 3645. https://doi.org/10.3390/rs13183645
  • Tarnavsky, E., Chavez, E., & Boogaard, H. (2018). Agro-meteorological risks to maize production in Tanzania: Sensitivity of an adapted water requirements satisfaction index (WRSI) model to rainfall. International Journal of Applied Earth Observation and Geoinformation, 73, 77–87. https://doi.org/10.1016/J.JAG.2018.04.008
  • Trabucco, A., Zomer, R., Perrella, A., Pafundi, P. C., Valente, G., Fontanella, L., Nevola, R., Guerrera, B., Iuliano, N., Imparato, M., Trabucco, A., Sasso, F. C., Morisco, F., Ascione, A., Piai, G., & Adinolfi, L. E. (2019). Global aridity index and potential evapotranspiration (ET0) climate database v2. Digestive Diseases and Sciences, 64(10), 3013–3019. https://doi.org/10.6084/m9.figshare.7504448.v3
  • Tuvdendorj, B., Wu, B., Zeng, H., Batdelger, G., & Nanzad, L. (2019). Determination of Appropriate Remote Sensing Indices for Spring Wheat Yield Estimation in Mongolia. Remote Sensing, 11(21). https://doi.org/10.3390/rs11212568
  • Usman, M., & Nichol, J. E. (2020). A spatio-temporal analysis of rainfall and drought monitoring in the tharparkar region of Pakistan. Remote Sensing, 12(3), 580. https://doi.org/10.3390/rs12030580
  • Vedenov, D. V., & Barnett, B. J. (2004). Efficiency of weather derivatives as primary crop insurance instruments. Journal of Agricultural and Resource Economics, 29(3), 387–403. http://www.jstor.org/stable/40987240
  • Vroege, W., Bucheli, J., Dalhaus, T., Hirschi, M., & Finger, R. (2021). Insuring crops from space: The potential of satellite-retrieved soil moisture to reduce farmers’ drought risk exposure. European Review of Agricultural Economics, 48(2), 266–314. https://doi.org/10.1093/erae/jbab010
  • Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., Bourgault, M., Martre, P., Ababaei, B., Bindi, M., Ferrise, R., Finger, R., Fodor, N., Gabaldón-Leal, C., Gaiser, T., Jabloun, M., Kersebaum, K. -C., Lizaso, J. I., Lorite, I. J., Wallach, D. … Wallach, D. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 9(1), 4249. https://doi.org/10.1038/s41467-018-06525-2
  • World Bank. (2011). Weather index insurance for agriculture : Guidance for development practitioners (english) (Vol. 50). World Bank Group. http://documents.worldbank.org/curated/en/590721468155130451/Weather-index-insurance-for-agriculture-guidance-for-development-practitioners
  • World Bank. (2015). Achievements in ACP Countries by Global Index Insurance Facility (GIIF) Program : Phase 1 (2010–2015) (English). World Bank Group. http://documents.worldbank.org/curated/en/482761490702615329/Achievements-in-ACP-Countries-by-Global-Index-Insurance-Facility-GIIF-Program-Phase-1-2010-2015
  • Xu, W., Odening, M., & Musshoff, O. (2008). Indifference pricing of weather derivatives. American Journal of Agricultural Economics, 90(4), 979–993. https://doi.org/10.1111/j.1467-8276.2008.01154.x
  • Yan, X., Chen, H., Tian, B., Sheng, S., Wang, J., & Kim, J. -S. (2021). A Downscaling–merging scheme for improving daily spatial precipitation estimates based on random forest and cokriging. Remote Sensing, 13(11), 2040. https://doi.org/10.3390/rs13112040
  • Yang, Y., Cao, C., Pan, X., Li, X., & Zhu, X. (2017). Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression. Remote Sensing, 9(8), 789. https://doi.org/10.3390/rs9080789
  • Zhang, H., Immerzeel, W. W., Zhang, F., de Kok, R. J., Gorrie, S. J., & Ye, M. (2021). Creating 1-km long-term (1980–2014) daily average air temperatures over the Tibetan Plateau by integrating eight types of reanalysis and land data assimilation products downscaled with MODIS-estimated temperature lapse rates based on machine learning. International Journal of Applied Earth Observation and Geoinformation, 97, 102295. https://doi.org/10.1016/j.jag.2021.102295
  • Zhang, H., Wang, S., Liu, K., Li, X., Li, Z., Zhang, X., & Liu, B. (2022). Downscaling of AMSR-E soil moisture over North China using random forest regression. ISPRS International Journal of Geo-Information, 11(2), 101. https://doi.org/10.3390/ijgi11020101
  • Zhu, W., Lű, A., Jia, S., Yan, J., & Mahmood, R. (2017). Retrievals of all-weather daytime air temperature from MODIS products. Remote Sensing of Environment, 189, 152–163. https://doi.org/10.1016/j.rse.2016.11.011