907
Views
0
CrossRef citations to date
0
Altmetric
Original Research Article

Spatial-temporal variations of surface water area during 1986–2018 in Qinghai Province, northwestern China based on Google Earth Engine

, , , &
Pages 333-349 | Received 13 Jan 2023, Accepted 05 Jun 2023, Published online: 19 Jun 2023

References

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome, 300(9).
  • Asadi, M. E. (2005). Effects of global climate change on water resources. Journal of Agricultural Meteorology, 60(5), 637–640. https://doi.org/10.2480/agrmet.637
  • Bai, J., Chen, X., Li, J., Yang, L., & Fang, H. (2011). Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environmental Monitoring and Assessment, 178(1–4), 247–256. https://doi.org/10.1007/s10661-010-1686-y
  • Cai, Y., Ke, C. Q., & Duan, Z. (2017). Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Science of the Total Environment, 607, 120–131. https://doi.org/10.1016/j.scitotenv.2017.07.027
  • Chang, B., He, K. N., Li, R. J., Wang, H., & Wen, J. (2018). Trends, abrupt changes, and periodicity of streamflow in Qinghai Province, the Northeastern Tibetan Plateau, China. Polish Journal of Environmental Studies, 27(2), 545–555. https://doi.org/10.15244/pjoes/76037
  • Chen, B. Q., Xiao, X. M., Li, X. P., Pan, L. H., Doughty, R., Ma, J., Dong, J., Qin, Y., Zhao, B., Wu, Z., Sun, R., Lan, G., Xie, G., Clinton, N., & Giri, C. (2017). A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 104–120. https://doi.org/10.1016/j.isprsjprs.2017.07.011
  • Dong, S. Y., Peng, F., You, Q. G., Guo, J., & Xue, X. (2018). Lake dynamics and its relationship to climate change on the Tibetan Plateau over the last four decades. Regional Environmental Change, 18(2), 477–487. https://doi.org/10.1007/s10113-017-1211-8
  • Du, Z. Q., Li, W. B., Zhou, D. B., Tian, L. Q., Ling, F., Wang, H. L., Gui, Y., & Sun, B. (2014). Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sensing Letters, 5(7), 672–681. https://doi.org/10.1080/2150704x.2014.960606
  • Fang, Y., Cheng, W. M., Zhang, Y. C., Wang, N., Zhao, S. M., Zhou, C. H., Chen, X., & Bao, A. (2016). Changes in inland lakes on the Tibetan Plateau over the past 40 years. Journal of Geographical Sciences, 26(4), 415–438. https://doi.org/10.1007/s11442-016-1277-0
  • Feng, L. L., Jia, Z. Q., Li, Q. X., & Xu, K. (2016). Fractional vegetation cover estimation based on MODIS satellite data from 2000 to 2013: A case study of Qinghai Province. Journal of the Indian Society of Remote Sensing, 44(2), 269–275. https://doi.org/10.1007/s12524-015-0492-y
  • Feng, M., Sexton, J. O., Channan, S., & Townshend, J. R. (2016). A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic-spectral classification algorithm. International Journal of Digital Earth, 9(2), 113–133. https://doi.org/10.1080/17538947.2015.1026420
  • Gong, P., Wang, J., Yu, L., Zhao, Y. C., Zhao, Y. Y., Liang, L., Niu, Z., Huang, X., Fu, H., Liu, S., Li, C., Li, X., Fu, W., Liu, C., Xu, Y., Wang, X., Cheng, Q., Hu, L. … Chen, J. (2013). Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7), 2607–2654. https://doi.org/10.1080/01431161.2012.748992
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Hall, J. W., Grey, D., Garrick, D., Fung, F., Brown, C., Dadson, S. J., & Sadoff, C. W. (2014). Coping with the curse of freshwater variability. Science, 346(6208), 429–430. https://doi.org/10.1126/science.1257890
  • Han, Z., Song, W., & Deng, X. (2016). Responses of ecosystem service to land use change in Qinghai Province. Energies, 9(4), 303. https://doi.org/10.3390/en9040303
  • Huang, N., Wang, L., Song, X. P., Black, T. A., Jassal, R. S., Myneni, R. B., Wu, C., Wang, L., Song, W., Ji, D., Yu, S., & Niu, Z. (2020). Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Science Advances, 6(41). https://doi.org/10.1126/sciadv.abb8508
  • Immerzeel, W. W., Droogers, P., Jong, S., & Bierkens, M. (2009). Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sensing of Environment, 113(1), 40–49. https://doi.org/10.1016/j.rse.2008.08.010
  • Kang, S., Xu, Y., You, Q., Flügel, W.-A., Pepin, N., & Yao, T. (2010). Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5(1), 15101–15101. https://doi.org/10.1088/1748-9326/5/1/015101
  • Ke, L. H., & Song, C. Q. (2014). Remotely sensed surface temperature variation of an inland saline lake over the central Qinghai-Tibet Plateau. ISPRS Journal of Photogrammetry and Remote Sensing, 98, 157–167. https://doi.org/10.1016/j.isprsjprs.2014.09.007
  • Ke, L. H., Song, C. Q., Wang, J. D., Sheng, Y. W., Ding, X. L., Yong, B., Ma, R. H., Liu, K., Zhan, P. F., & Luo, S. X. (2022). Constraining the contribution of glacier mass balance to the Tibetan lake growth in the early 21st century. Remote Sensing of Environment, 268. https://doi.org/10.1016/j.rse.2021.112779
  • Lei, Y. B., Yang, K., Wang, B., Sheng, Y. W., Bird, B. W., Zhang, G. Q., & Tian, L. (2014). Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change, 125(2), 281–290. https://doi.org/10.1007/s10584-014-1175-3
  • Lei, Y. B., Yao, T. D., Yang, K., Sheng, Y. W., Kleinherenbrink, M., Yi, S., Bird, B. W., Zhang, X., Zhu, L., & Zhang, G. (2017). Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology. Geophysical Research Letters, 44(2), 892–900. https://doi.org/10.1002/2016gl072062
  • Liao, J. J., Shen, G. Z., & Li, Y. K. (2013). Lake variations in response to climate change in the Tibetan Plateau in the past 40 years. International Journal of Digital Earth, 6(6), 534–549. https://doi.org/10.1080/17538947.2012.656290
  • Li, H. Y., Mao, D. H., Li, X. Y., Wang, Z. M., & Wang, C. Z. (2019). Monitoring 40-year lake area changes of the qaidam basin, Tibetan plateau, using Landsat time series. Remote Sensing, 11(3), 343. https://doi.org/10.3390/rs11030343
  • Li, D., Wu, B., Chen, B., Qin, C., Wang, Y., Zhang, Y., & Xue, Y. (2020). Open-surface river extraction based on sentinel-2 MSI imagery and DEM Data: Case study of the upper yellow river. Remote Sensing, 12(17), 2737. https://doi.org/10.3390/rs12172737
  • Mao, D. H., Wang, Z. M., Yang, H., Li, H. Y., Thompson, J. R., Li, L., Song, K., Chen, B., Gao, H., & Wu, J. (2018). Impacts of climate change on Tibetan lakes: patterns and processes. Remote Sensing, 10(3), 358. https://doi.org/10.3390/rs10030358
  • Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418±. https://doi.org/10.1038/nature20584
  • Postel, S. L., Daily, G. C., & Ehrlich, P. R. (1996). Human appropriation of renewable fresh water. Science, 271(5250), 785–788. https://doi.org/10.1126/science.271.5250.785
  • Qiao, B. J., & Zhu, L. P. (2019). Difference and cause analysis of water storage changes for glacier-fed and non-glacier-fed lakes on the Tibetan Plateau. Science of the Total Environment, 693, 693. https://doi.org/10.1016/j.scitotenv.2019.07.205
  • Qiao, B., Zhu, L., & Yang, R. (2019). Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sensing of Environment, 222, 232–243. https://doi.org/10.1016/j.rse.2018.12.037
  • Rembold, F., Meroni, M., Urbano, F., Csak, G., Kerdiles, H., Perez-Hoyos, A., Lemoine, G., Leo, O., & Negre, T. (2019). ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis. Agricultural Systems, 168, 247–257. https://doi.org/10.1016/j.agsy.2018.07.002
  • Scherler, D., Bookhagen, B., & Strecker, M. R. (2011). Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nature Geoscience, 4(3), 156–159. https://doi.org/10.1038/ngeo1068
  • Smith, T., & Bookhagen, B. (2018). Changes in seasonal snow water equivalent distribution in High Mountain Asia (1987 to 2009). Science Advances, 4(1). https://doi.org/10.1126/sciadv.1701550
  • Song, C. Q., Huang, B., & Ke, L. H. (2013). Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sensing of Environment, 135, 25–35. https://doi.org/10.1016/j.rse.2013.03.013
  • Song, C. Q., Huang, B., Ke, L. H., & Richards, K. S. (2014). Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 26–37. https://doi.org/10.1016/j.isprsjprs.2014.03.001
  • Tang, F., Wang, L., Guo, Y. Q., Fu, M. C., Huang, N., Duan, W. S., Luo, M., Zhang, J., Li, W., & Song, W. (2022). Spatio-temporal variation and coupling coordination relationship between urbanisation and habitat quality in the Grand Canal, China. Land Use Policy, 117, 117. https://doi.org/10.1016/j.landusepol.2022.106119
  • Tao, S. L., Fang, J. Y., Ma, S. H., Cai, Q., Xiong, X. Y., Tian, D., Zhao, X., Fang, L., Zhang, H., Zhu, J., & Zhao, S. (2020). Changes in China’s lakes: Climate and human impacts. National Science Review, 7(1), 132–140. https://doi.org/10.1093/nsr/nwz103
  • Tian, H. F., Chen, T., Li, Q. Z., Mei, Q. Y., Wang, S., Yang, M. D., Wang, Y., & Qin, Y. (2022). A novel spectral index for automatic canola mapping by using sentinel-2 imagery. Remote Sensing, 14(5), 1113. https://doi.org/10.3390/rs14051113
  • Verpoorter, C., Kutser, T., Seekell, D. A., & Tranvik, L. J. (2014). A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396–6402. https://doi.org/10.1002/2014gl060641
  • Vorosmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: Vulnerability from climate change and population growth. Science, 289(5477), 284–288. https://doi.org/10.1126/science.289.5477.284
  • Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., & Davies, P. M. (2010). Global threats to human water security and river biodiversity. Nature, 467(7315), 555–561. https://doi.org/10.1038/nature09440
  • Wang, C., Jia, M. M., Chen, N. C., & Wang, W. (2018). Long-term surface water dynamics analysis based on Landsat imagery and the google earth engine platform: A case study in the middle Yangtze River Basin. Remote Sensing, 10(10), 1635. https://doi.org/10.3390/rs10101635
  • Wang, X. X., Xiao, X. M., Zou, Z. H., Dong, J. W., Qin, Y. W., Doughty, R. B., Menarguez, M. A., Chen, B., Wang, J., Ye, H., Ma, J., Zhong, Q., Zhao, B., & Li, B. (2020). Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-17103-w
  • Wan, W., Xiao, P. F., Feng, X. Z., Li, H., Ma, R. H., Duan, H. T., & Zhao, L. (2014). Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chinese Science Bulletin, 59(10), 1021–1035. https://doi.org/10.1007/s11434-014-0128-6
  • Wilson, M. C., & Smith, A. T. (2015). The pika and the watershed: The impact of small mammal poisoning on the ecohydrology of the Qinghai-Tibetan Plateau. Ambio, 44(1), 16–22. https://doi.org/10.1007/s13280-014-0568-x
  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179
  • Yamazaki, D., Trigg, M. A., & Ikeshima, D. (2015). Development of a global similar to 90 m water body map using multi-temporal Landsat images. Remote Sensing of Environment, 171, 337–351. https://doi.org/10.1016/j.rse.2015.10.014
  • Yang, R. M., Zhu, L. P., Wang, J. B., Ju, J. T., Ma, Q. F., Turner, F., & Guo, Y. (2017). Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Climatic Change, 140(3–4), 621–633. https://doi.org/10.1007/s10584-016-1877-9
  • Yan, L. J., & Zheng, M. P. (2015). The response of lake variations to climate change in the past forty years: A case study of the northeastern Tibetan Plateau and adjacent areas, China. Quaternary International, 371, 31–48. https://doi.org/10.1016/j.quaint.2014.12.057
  • Yue, T. X., Zhao, N., Ramsey, R. D., Wang, C. L., Fan, Z. M., Chen, C. F., Lu, Y.-M., & Li, B.-L. (2013). Climate change trend in China, with improved accuracy. Climatic Change, 120(1–2), 137–151. https://doi.org/10.1007/s10584-013-0785-5
  • Zhang, G. Q., Juan, C.-X., Feng, A.-M., Bian, H.-L., Liu, W.-D., Zhang, G.-Q., Wang, C.-Z., Cao, Q., & Zhou, G.-P. (2019). Attenuating the abnormally high expression of AEBP1 suppresses the pathogenesis of childhood acute lymphoblastic leukemia via p53-dependent signaling pathway. European Review for Medical and Pharmacological Sciences, 23(3), 1184–1195. https://doi.org/10.11888/BaseGeography.tpe.249465.file
  • Zhang, G. Q., Yao, T. D., Shum, C. K., Yi, S., Yang, K., Xie, H. J., Feng, W., Bolch, T., Wang, L., Behrangi, A., Zhang, H. B., Wang, W. C., Xiang, Y., & Yu, J. Y. (2017). Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophysical Research Letters, 44(11), 5550–5560. https://doi.org/10.1002/2017gl073773
  • Zhang, G. Q., Yao, T. D., Xie, H. J., Kang, S. C., & Lei, Y. B. (2013). Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophysical Research Letters, 40(10), 2125–2130. https://doi.org/10.1002/grl.50462
  • Zhao, R., Fu, P., Zhou, Y., Xiao, X. M., Grebby, S., Zhang, G. Q., & Dong, J. (2022). Annual 30-m big Lake Maps of the Tibetan Plateau in 1991–2018. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01275-9
  • Zhou, Y. S., Hu, J., Li, Z. W., Li, J., Zhao, R., & Ding, X. L. (2019). Quantifying glacier mass change and its contribution to lake growths in central Kunlun during 2000-2015 from multi-source remote sensing data. Journal of Hydrology, 570, 38–50. https://doi.org/10.1016/j.jhydrol.2019.01.007
  • Zhu, J. Y., Song, C. Q., Wang, J. D., & Ke, L. H. (2020). China’s inland water dynamics: The significance of water body types. Proceedings of the National Academy of Sciences of the United States of America, 117(25), 13876–13878. https://doi.org/10.1073/pnas.2005584117