649
Views
1
CrossRef citations to date
0
Altmetric
Data Article

The summer standardized precipitation evapotranspiration index (SPEI) dataset for six European regions over the past millennium reconstructed by tree-ring chronologies

, , &
Pages 1146-1168 | Received 04 Feb 2023, Accepted 10 Aug 2023, Published online: 30 Aug 2023

References

  • Abbasi, F., Bazgeer, S., Kalehbasti, P. R., Oskoue, E. A., Haghighat, M., & Kalebasti, P. R. (2022). New climatic zones in Iran: A comparative study of different empirical methods and clustering technique. Theoretical and Applied Climatology, 147(1–2), 47–61. https://doi.org/10.1007/s00704-021-03785-9
  • Andreu-Hayles, L., Ummenhofer, C. C., Barriendos, M., Schleser, G. H., Helle, G., Leuenberger, M., Gutierrez, E., & Cook, E. R. (2017). 400 years of summer hydroclimate from stable isotopes in Iberian trees. Climate Dynamics, 49(1–2), 143–161. https://doi.org/10.1007/s00382-016-3332-z
  • Babst, F., Bodesheim, P., Charney, N., Friend, A. D., Girardin, M. P., Klesse, S., Moore, D. J. P., Seftigen, K., Björklund, J., Bouriaud, O., Dawson, A., DeRose, R. J., Dietze, M. C., Eckes, A. H., Enquist, B., Frank, D. C., Mahecha, M. D., Poulter, B. & Zhang, Z. (2018). When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 197, 1–20. https://doi.org/10.1016/j.quascirev.2018.07.009
  • Begueria, S., Vicente-Serrano, S. M., & Angulo-Martinez, M. (2010). A multiscalar global drought dataset: The speibase: A New gridded product for the analysis of drought variability and impacts. Bulletin of the American Meteorological Society, 91(10), 1351–1354. https://doi.org/10.1175/2010bams2988.1
  • Begueria, S., Vicente-Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10), 3001–3023. https://doi.org/10.1002/joc.3887
  • Benito, G., Macklin, M. G., Zielhofer, C., Jone, A. F., & Machado, M. J. (2015). Holocene flooding and climate change in the Mediterranean. Catena, 130, 13–33. https://doi.org/10.1016/j.catena.2014.11.014
  • Breitenmoser, P., Bronnimann, S., & Frank, D. (2014). Forward modelling of tree-ring width and comparison with a global network of tree-ring chronologies. Climate of the Past, 10(2), 437–449. https://doi.org/10.5194/cp-10-437-2014
  • Bu, J., Liu, W., Pan, Z., & Ling, K. (2020). Comparative study of hydrochemical classification based on different hierarchical cluster analysis methods. International Journal of Environmental Research and Public Health, 17(24), 24. https://doi.org/10.3390/ijerph17249515
  • Buntgen, U., Urban, O., Krusic, P. J., Rybnicek, M., Kolar, T., Kyncl, T., Trnka, M., Koňasová, E., Čáslavský, J., Esper, J., Wagner, S., Saurer, M., Tegel, W., Dobrovolný, P., Cherubini, P., Reinig, F., & Trnka, M. (2021). Recent European drought extremes beyond Common Era background variability. Nature Geoscience, 14(4), 190–196. https://doi.org/10.1038/s41561-021-00698-0
  • Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Buntgen, U., Frank, D., & Zang, C. (2015). Old World megadroughts and pluvials during the Common Era. Science Advances, 1(10), 9. https://doi.org/10.1126/sciadv.1500561
  • Cook, B. I., Smerdon, J. E., Seager, R., & Coats, S. (2014). Global warming and 21st century drying. Climate Dynamics, 43(9–10), 2607–2627. https://doi.org/10.1007/s00382-014-2075-y
  • Cooper, R. J., Melvin, T. M., Tyers, I., Wilson, R. J. S., & Briffa, K. R. (2013). A tree-ring reconstruction of East Anglian (UK) hydroclimate variability over the last millennium. Climate Dynamics, 40(3–4), 1019–1039. https://doi.org/10.1007/s00382-012-1328-x
  • Dannenberg, M. P., & Wise, E. K. (2016). Seasonal climate signals from multiple tree ring metrics: A case study of Pinus ponderosa in the upper Columbia River Basin. Journal of Geophysical Research: Biogeosciences, 121(4), 1178–1189. https://doi.org/10.1002/2015JG003155
  • Darand, M., & Mansouri Daneshvar, M. R. (2014). Regionalization of precipitation regimes in Iran using principal component analysis and hierarchical clustering analysis. Environmental Processes, 1(4), 517–532. https://doi.org/10.1007/s40710-014-0039-1
  • Deitch, M. J., Sapundjieff, M. J., & Feirer, S. T. (2017). Characterizing precipitation variability and trends in the world’s Mediterranean-climate areas. Water, 9(4), 259. https://doi.org/10.3390/w9040259
  • Dobrovolny, P., Rybnicek, M., Kolar, T., Brazdil, R., Trnka, M., & Buntgen, U. (2018). May-July precipitation reconstruction from oak tree-rings for Bohemia (Czech Republic) since AD 1040. International Journal of Climatology, 38(4), 1910–1924. https://doi.org/10.1002/joc.5305
  • Eshel, G., & Farrell, B. F. (2000). Mechanisms of eastern Mediterranean rainfall variability. Journal of the Atmospheric Sciences, 57(19), 3219–3232. https://doi.org/10.1175/1520-0469(2000)057<3219:MOEMRV>2.0.CO;2
  • Fang, C. L., Liu, H. M., Luo, K., & Yu, X. H. (2017). Process and proposal for comprehensive regionalization of Chinese human geography. Journal of Geographical Sciences, 72(2), 179–196. https://doi.org/10.1007/s11442-017-1428-y
  • Fritts, H. C. (1972). Tree rings and climate. Scientific American, 226(5), 92–100. https://doi.org/10.1038/scientificamerican0572-92
  • Gagen, M., McCarroll, D., & Edouard, J.-L. (2006). Combining ring width, density and stable carbon isotope proxies to enhance the climate signal in tree-rings: An example from the southern French Alps. Climatic Change, 78(2–4), 363–379. https://doi.org/10.1007/s10584-006-9097-3
  • Gong, D. Y., Drange, H., & Gao, Y. Q. (2007). Reconstruction of Northern Hemisphere 500hPa geopotential heights back to the late 19th century. Theoretical and Applied Climatology, 90(1–2), 83–102. https://doi.org/10.1007/s00704-006-0271-3
  • Griggs, C., DeGaetano, A., Kuniholm, P., & Newton, M. (2007). A regional high-frequency reconstruction of May-June precipitation in the north Aegean from oak tree rings, AD 1089-1989. International Journal of Climatology, 27(8), 1075–1089. https://doi.org/10.1002/joc.1459
  • Gu, H. L. (2020). Insights into the approaches of extracting climate-growth information: A case study of simulated and Real tree ring data. Nanjing Normal University. https://doi.org/10.27245/d.cnki.gnjsu.2020.002552
  • Han, W., & Zhai, P. M. (2015). Three cluster methods in regionalization of temperature zones in China. Climatic and Environmental Research, 20(1), 111–118. https://doi.org/10.0695/85(2015)20:1<111:SZJLFX>2.0.TX;2-B
  • Helama, S., Sohar, K., Laanelaid, A., Bijak, S., & Jaagus, J. (2018). Reconstruction of precipitation variability in Estonia since the eighteenth century, inferred from oak and spruce tree rings. Climate Dynamics, 50(11–12), 4083–4101. https://doi.org/10.1007/s00382-017-3862-z
  • Hoffmann, D., Gallant, A. J. E., & Arblaster, J. M. (2020). Uncertainties in drought from index and data selection. Journal of Geophysical Research-Atmospheres, 125(18), e2019JD031946. https://doi.org/10.1029/2019JD031946
  • Hofstra, N., & New, M. (2009). Spatial variability in correlation decay distance and influence on angular-distance weighting interpolation of daily precipitation over Europe. International Journal of Climatology, 29(12), 1872–1880. https://doi.org/10.1002/joc.1819
  • Hoy, A., Schucknecht, A., Sepp, M., & Matschullat, J. (2014). Large-scale synoptic types and their impact on European precipitation. Theoretical and Applied Climatology, 116(1–2), 19–35. https://doi.org/10.1007/s00704-013-0897-x
  • Huang, J., Zhai, J., Jiang, T., Wang, Y. J., Li, X. C., Wang, R., Xiong, M., Su, B. D., & Fischer, T. (2018). Analysis of future drought characteristics in China using the regional climate model CCLM. International Journal of Climatology, 50(1–2), 507–525. https://doi.org/10.1007/s00382-017-3623-z
  • King, M. P., Yu, E. T., & Sillmann, J. (2020). Impact of strong and extreme El Ninos on European hydroclimate. Tellus A: Dynamic Meteorology & Oceanography, 72(1), 1–10. https://doi.org/10.1080/16000870.2019.1704342
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Koppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130
  • Laimighofer, J., & Laaha, G. (2022). How standard are standardized drought indices? Uncertainty components for the SPI & SPEI case. Journal of Hydrology, 63(A), 128385. https://doi.org/10.1016/j.jhydrol.2022.128385
  • Lavergne, A., Daux, V., Villalba, R., & Barichivich, J. (2015). Temporal changes in climatic limitation of tree-growth at upper treeline forests: Contrasted responses along the west-to-east humidity gradient in Northern Patagonia. Dendrochronologia, 36, 49–59. https://doi.org/10.1016/j.dendro.2015.09.001
  • Leijonhufvud, L., & Resto, D. (2021). Documentary evidence of droughts in Sweden between the middle ages and CA. 1800 CE. Climate of the Past, 17(5), 2015–2029. https://doi.org/10.5194/cp-17-2015-2021
  • Levesque, M., Andreu-Hayles, L., Smith, W. K., Williams, A. P., Hobi, M. L., Allred, B. W., & Pederson, N. (2019). Tree-ring isotopes capture interannual vegetation productivity dynamics at the biome scale. Nature Communications, 10(1), 742. https://doi.org/10.1038/s41467-019-08634-y
  • Li, Q., Liu, Y., Song, H. M., Yang, Y. K., & Zhao, B. Y. (2015). Divergence of tree-ring-based drought reconstruction between the individual sampling site and the Monsoon Asia drought Atlas: An example from Guancen Mountain. Science Bulletin, 60(19), 1688–1697. https://doi.org/10.1007/s11434-015-0889-6
  • Liu, W. H., Gou, X. H., Li, J. B., Huo, Y. X., Yang, M. X., Zhang, J. Z., Zhang, W. G., & Yin, D. C. (2021). Temperature signals complicate tree-ring precipitation reconstructions on the Northeastern Tibetan Plateau. Global and Planetary Change, 200, 103460. https://doi.org/10.1016/j.gloplacha.2021.103460
  • Ljungqvist, F., Krusic, P., Sundqvist, H., Zorita, E., Brattström, G., & Frank, D. (2016). Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature, 532(7597), 94–98. https://doi.org/10.1038/nature17418
  • Ljungqvist, F. C., Piermattei, A., Seim, A., Krusic, P. J., Buntgen, U., He, M. H., & Esper, J. (2020). Ranking of tree-ring based hydroclimate reconstructions of the past millennium. Quaternary Science Reviews, 230, 26. https://doi.org/10.1016/j.quascirev.2019.106074
  • Ljungqvist, F. C., Seim, A., Krusic, P. J., Gonzalez-Rouco, J. F., Werner, J. P., Cook, E. R., & Buntgen, U. (2019). European warm-season temperature and hydroclimate since 850 CE. Environmental Research Letters, 14(8), 15. https://doi.org/10.1088/1748-9326/ab2c7e
  • Loader, N. J., Santillo, P. M., Woodman-Ralph, J. P., Rolfe, J. E., Hall, M. A., Gagen, M., Robertson, I., Wilson, R., Froyd, C. A., & McCarroll, D. (2008). Multiple stable isotopes from oak trees in southwestern Scotland and the potential for stable isotope dendroclimatology in maritime climatic regions. Chemical Geology, 252(1–2), 62–71. https://doi.org/10.1016/j.chemgeo.2008.01.006
  • Loader, N. J., Young, G. H. F., McCarroll, D., Davies, D., Milles, D., & Ramsey, C. B. (2020). Summer precipitation for the England and Wales region, 1201-2000ce, from stable oxygen isotopes in oak tree rings. Journal of Quaternary Science, 35(6), 731–736. https://doi.org/10.1002/jqs.3226
  • Makinen, H., Nojd, P., Kahle, H. P., Neumann, U., Tveite, B., Mielikäinen, K., Röhle, H., & Spiecker, H. (2003). Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. In central and northern Europe. Trees-Structure and Function, 17(2), 173–184. https://doi.org/10.1007/s00468-002-0220-4
  • Martin-Benito, D., Ummenhofer, C. C., Kose, N., Guner, H. T., & Pederson, N. (2016). Tree-ring reconstructed May-June precipitation in the Caucasus since 1752 CE. Climate Dynamics, 47(9–10), 3011–3027. https://doi.org/10.1007/s00382-016-3010-1
  • Mischel, M., Esper, J., Keppler, F., Greule, M., & Werner, W. (2015). δ H-2, δ C-13 and δ O-18 from whole wood, α -cellulose and lignin methoxyl groups in Pinus sylvestris: A multi-parameter approach. Isotopes in Environmental and Health Studies, 51(4), 553–568. https://doi.org/10.1080/10256016.2015.1056181
  • Nojd, P., Korpela, M., Hari, P., Rannik, Ü., Sulkava, M., Hollmén, J., & Mäkinen, H. (2017). Effects of precipitation and temperature on the growth variation of scots pine—A case study at two extreme sites in Finland. Dendrochronologia, 46, 35–45. https://doi.org/10.1016/j.dendro.2017.09.003
  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  • Qin, A. M., Qian, W. H., & Cai, Q. B. (2005). Seasonal division and trend characteristic of air temperature in China in the last 41 years. Meteorological Sciences, 25(4), 4338–4345. https://doi.org/10.0908/27(2005)25:4<338:1NZGBT>2.0.TX;2-O
  • Rao, M. P., Cook, B. I., Cook, E. R., D’Arrigo, R. D., Krusic, P. J., Anchukaitis, K. J., & Griffin, K. L. (2017). European and Mediterranean hydroclimate responses to tropical volcanic forcing over the last millennimum. Geophysical Research Letters, 44(10), 5104–5112. https://doi.org/10.1002/2017gl073057
  • Rinne, K. T., Loader, N. J., Switsur, V. R., & Waterhouse, J. S. (2013). 400-year May-August precipitation reconstruction for Southern England using oxygen isotopes in tree rings. Quaternary Science Reviews, 60, 13–25. https://doi.org/10.1016/j.quascirev.2012.10.048
  • Rocha, E., Gunnarson, B. E., & Holzkamper, S. (2020). Reconstructing summer precipitation with MXD data from Pinus sylvestris growing in the Stockholm Archipelago. Atmosphere, 111(8), 790. https://doi.org/10.3390/atmos11080790
  • Rodrigo, F. S., Esteban-Parra, M. J., Pozo-Vazquez, D., & Castro-Diez, Y. (2000). Rainfall variability in Southern Spain on decadal to centennial time scales. International Journal of Climatology, 20(7), 721–732. https://doi.org/10.1002/1097-0088(20000615)20:7<721:AID-JOC520>3.0.CO;2-Q
  • Sa’adi, Z., Shahid, S., & Shiru, M. S. (2021). Defining climate zone of Borneo based on cluster analysis. Theoretical and Applied Climatology, 145(3–4), 1467–1484. https://doi.org/10.1007/s00704-021-03701-1
  • Seftigen, K., Bjorklund, J., Cook, E. R., & Linderholm, H. W. (2015a). A tree-ring field reconstruction of Fennoscandian summer hydroclimate variability for the last millennium. Climate Dynamics, 44(11–12), 3141–3154. https://doi.org/10.1007/s00382-014-2191-8
  • Seftigen, K., Cook, E. R., Linderholm, H. W., Fuentes, M., & Bjorklund, J. (2015b). The potential of deriving tree-ring-based field reconstructions of droughts and Pluvials over Fennoscandia. Journal of Climate, 28(9), 3453–3471. https://doi.org/10.1175/jcli-d-13-00734.1
  • Seftigen, K., Goosse, H., Klein, F., & Chen, D. L. (2017). Hydroclimate variability in Scandinavia over the last millennium - insights from a climate model-proxy data comparison. Climate of the Past, 13(12), 1831–1850. https://doi.org/10.5194/cp-13-1831-2017
  • Shi, L. J., Feng, P. Y., Wang, B., Liu, D. L., & Yu, Q. (2020). Quantifying future drought change and associated uncertainty in Southeastern Australia with multiple potential evapotranspiration models. Journal of Hydrology, 590, 125394. https://doi.org/10.1016/j.jhydrol.2020.125394
  • Srivastava, A., Grotjahn, R., Ullrich, P. A., & Risser, M. (2019). A unified approach to evaluating precipitation frequency estimates with uncertainty quantification: Application to Florida and California watersheds. Journal of Hydrology, 578, 124095. https://doi.org/10.1016/j.jhydrol.2019.124095
  • Steiger, N. J., Smerdon, J. E., Cook, E. R., & Cook, B. I. (2018). Data descriptor: A reconstruction of global hydroclimate and dynamical variables over the Common Era. Scientific Data, 5(1), 15. https://doi.org/10.1038/sdata.2018.86
  • Steinman, B. A., Stansell, N. D., Mann, M. E., Cooke, C. A., Abbott, M. B., Vuille, M., Bird, B. W., Lachniet, M. S., & Fernandez, A. (2022). Interhemispheric antiphasing of neotropical precipitation during the past millennium. Proceedings of the National Academy of Sciences of the United States of America, 119(17), e2120015119. https://doi.org/10.1073/pnas.2120015119
  • Stridbeck, P., Bjorklund, J., Fuentes, M., Gunnarson, B. E., Jönsson, A. M., Linderholm, H. W., Ljungqvist, F. C., Olsson, C., Rayner, D., Rocha, E., Zhang, P., & Seftigen, K. (2022). Partly decoupled tree-ring width and leaf phenology response to 20th century temperature change in Sweden. Dendrochronologia, 75, 125993. https://doi.org/10.1016/j.dendro.2022.125993
  • Tao, H., Borth, H., Fraedrich, K., Su, B. D., & Zhu, X. H. (2014). Drought and wetness variability in the Tarim River basin and connection to large-scale atmospheric circulation. International Journal of Climatology, 34(8), 2678–2684. https://doi.org/10.1002/joc.3867
  • Trnka, M., Balek, J., Stepanek, P., Zahradnicek, P., Mozny, M., Eitzinger, J., Zalud, Z., Formayer, H., Turna, M., Nejedlik, P., Semeradova, D., Hlavinka, P., & Brazdil, R. (2016). Drought trends over part of central Europe between 1961 and 2014. Climate Research, 70(2–3), 143–160. https://doi.org/10.3354/cr01420
  • Vautard, R., Yiou, P., D’Andrea, F., de Noblet, N., Viovy, N., Cassou, C., Polcher, J., Ciais, P., Kageyaa, M., & Fan, Y. (2007). Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophysical Research Letters, 34(7). https://doi.org/10.1029/2006GL028001
  • Vicente-Serrano, S. M., Begueria, S., & Lopez-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009jcli2909.1
  • Wan, H., Zhang, X., Zwiers, F. W., & Shiogama, H. (2013). Effect of data coverage on the estimation of mean and variability of precipitation at global and regional scales. Journal of Geophysical Research-Atmospheres, 118(2), 534–546. https://doi.org/10.1002/jgrd.50118
  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845
  • Wilson, R., Miles, D., Loader, N. J., Melvin, T., Cunningham, L., Cooper, R., & Briffa, K. (2013). A millennial long March-July precipitation reconstruction for southern-central England. Climate Dynamics, 40(3–4), 997–1017. https://doi.org/10.1007/s00382-012-1318-z
  • Zhang, R. B., Yuan, Y. J., Gou, X. H., He, Q., Shang, H. M., Zhang, T. W., & Fan, Z. A. (2016). Tree-ring-based moisture variability in western Tianshan Mountains since A.D. 1882 and its possible driving mechanism. Agricultural and Forest Meteorology, 218, 267–276. https://doi.org/10.1016/j.agrformet.2015.12.067
  • Zheng, J. Y., Yin, Y. H., & Li, B. Y. (2010). A New Scheme for climate regionalization in China. Acta Geographica Sinica, 65(1), 3–12. https://doi.org/10.0375/5444(2010)65:1<3:ZGQHQH>2.0.TX;2-6